Giải:
Kẻ hình chữ nhật \(ABCH\)
Dễ dàng tính được các độ dài: \(BD=\sqrt{10}a;BC=\sqrt{3}a,DC=\sqrt{7}a\)
\(\Rightarrow DC\perp BC\)
Ta có \(\left\{\begin{matrix} AH\perp AB\\ DA\perp AB\end{matrix}\right.\Rightarrow AB\perp (ADH)\rightarrow AB\perp DH\)
Tương tự do \(DC\perp BC,BC\perp HC\) nên \(DH\perp BC\)
\(\Rightarrow DH\perp (ABCH)\)
Theo hệ thức Pitago: \(DH=\sqrt{AD^2-AH^2}=\sqrt{6}a\)
Do đó thể tích \(ABCD\) là : \(V=\frac{S_{ABC}.DH}{3}=\frac{AB.BC.DH}{6}=\frac{\sqrt{2}a^3}{2}\)