a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc với BC
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc với BC
cho tam giác ABC cân tại A .goim M cân tại A là trung điểm của BC
a)cm tam giác ABM= tam giác ACM
b)cm AM vuông góc BC
c)kẻ MH vuông góc AB tại H
MK vuông góc AC tại K
cm MA=MB
d)cm tam giác AHK cân
Cho tam giác ABC có 3 góc nhọn và AB = AC.
Gọi M là trung điểm của đoạn thẳng BC.
a) Chứng minh : Tam giác ABM = tam giác ACM.
b) Trên tia đối MA lấy điểm E sao cho MA = ME. Chứng minh AC // BE.
c) Kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K.
Chứng minh : Góc ABH = góc ECK.
d) Chứng minh : M là trung điểm của đoạn thẳng HK.
cho tam giác ABC cân tại A, M là trung điểm BC
a) CM tam giác AMB = tam giác AMC
B) CM AM vuông góc BC
C) trên tia đối của tia MA lấy điểm B sao cho MD = MA . CM AB//DC
giúp với
Cho tam giác ABC có AB=AC.Gọi M là trung điểm của đoạn thẳng BC
a)Chứng minh: tam giác ABM=tam giác ACM
b)Chứng minh:AM vuông góc BC
c)Trên tia đối của tia MA lấy điểm D sao cho MA=MD. Chứng minh AD//CD
d)Kẻ MH vuông góc AB,MK vuông góc CD(H thuộc AB, K thuộc CD). Chứng minh 3 điểm H,M,K thẳng hàng
Giúp mình với ạ mình cảm ơn
Câu 1: Cho tam giác ABC cân tại A. Kẻ qua B tia Bx vuông góc với AB, kẻ qua C tia Cy vuông góc với AC. Gọi I là giao điểm của Bx và Cy. CMR:
a, Tam giác ABI = tam giác ACI
b, AI là trung trực của BC
Câu 2: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N, sao cho BM=CN
a, CM tam giác AMN cân
b, Kẻ BH vuông góc với AM, CK vuông góc với AN. CMR BH = CK
c, Gọi O là giao điểm của BH và CK. CM tam giác OBC cân
d, Gọi D là trung điểm của BC. CMR 3 điểm A,D,O thẳng hàng
Câu 3: Cho tam giác ABC cân tại A, M là trung điểm của BC
a, CM tam giác ABM = tam giác ACM
b, CM AM vuông góc với BC
c, Trên cạnh AB lấy điểm E, trên cạnh CA lấy điểm F, sao cho BE = CF. CM tam giác EBC = tam giác FCB
d, CM EF//BC
Cho tam giác ABC có ba góc nhọn có AB = AC . Gọi M là trung điểm của cạnh BC . Trên tia đối của tia MA lấy điểm E sao cho MA = ME , từ B kẻ BH vuông góc AC tại H , từ C kẻ CK vuông góc BE tại K . CMR : a) góc ABH = góc ECK d) MH = MK
Tam giác ABC có M là trung điểm của Bc. Trên tia đối của tia MA, lấy điểm E sao cho ME=MA
a) CM: Tam giác ABM=Tam giác ECM
b)Kẻ AH vuông góc với BC. Trên tia đối của tia HA, lấy điểm D sao cho HB=HA. CM: BC là tia phân giác của góc ABD và BD=CE
Cho ∆ABC có ba góc nhọn, AB=AC. Gọi M là trung điểm của đoạn
thẳng BC.
Chứng minh ∆ABM=∆ACM
Trên tia đối MA lấy E sao cho MA=ME. Chứng minh AC // BE
Kẻ BH vuông góc với AC tại H, kẻ CK vuông góc BE tại K. Chứng minh
(ABH) ̂=(ECK) ̂
Chứng minh M là trung điểm của đoạn thẳng HK.
cho tam giác ABC vuông tại A có AB<AC, M là trung điểm BC trên tia đối MA lấy điểm D sao cho MA=MD
a)cm tam giác BAM= tam giác DCM
b)cm AC vuông góc DC
c) kẻ MN vuông góc AC ( N e AC) , BN cắt AD tại G. cm AD=3AG