Chứng minh :
a. \(2< \log_23+\log_32< \frac{5}{2}\)
b. \(\log_{\frac{1}{2}}3+\log_3\frac{1}{2}< -2\)
Xác định dấu của biểu thức :
\(A=\left(\frac{1}{6}\right)^{\log_62-\frac{1}{2}\log_{\sqrt{6}}5}-\sqrt[3]{\frac{31}{2}}\)
Xác định dấu của biểu thức :
\(A=\frac{\log_53.\log_{15}4}{\log_{\frac{1}{3}}\frac{14}{5}.\log_{0,3}\frac{7}{2}}\)
Tìm tập xác định của hàm số :
\(y=\sqrt{\log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)}\)
So sánh :
a. \(\log_23\) và \(\log_311\)
b. \(\left(\frac{5}{7}\right)^{\frac{-\sqrt{5}}{2}}\) và 1
Sắp xếp theo thứ tự giảm dần :
\(\sqrt{2};\left(2^3\right)^{\log_{64}\frac{5}{4}};2^{\frac{\pi}{6}};2^{3\log_92}\)
Giải bất phương trình :
\(f'\left(x\right)< g'\left(x\right)\)
Biết \(f\left(x\right)=\frac{1}{2}.5^{2x+1};g\left(x\right)=5^x+4x\ln5\)
Cho :
\(x=\frac{1}{3}\left(\sqrt[3]{\frac{23+\sqrt{513}}{4}}+\sqrt[3]{\frac{23-\sqrt{513}}{4}}-1\right)\)
Hãy tính : \(A=x^3+x^2+1\)
So sánh :
a. \(0,7^{\frac{\sqrt{5}}{6}}\) và \(0,7^{\frac{1}{3}}\)
b. \(2^{\sqrt{3}}\) và \(3^{\sqrt{2}}\)
c. \(\log_{0,4}\sqrt{2}\) và \(\log_{0,2}0,34\)