Lời giải:
$P=\frac{2\sin x-\cos x}{\sin x+\cos x}=\frac{2.\frac{\sin x}{\cos x}-1}{\frac{\sin x}{\cos x}+1}=\frac{2\tan x-1}{\tan x+1}$
$=\frac{2.3-1}{3+1}=\frac{5}{4}$
Lời giải:
$P=\frac{2\sin x-\cos x}{\sin x+\cos x}=\frac{2.\frac{\sin x}{\cos x}-1}{\frac{\sin x}{\cos x}+1}=\frac{2\tan x-1}{\tan x+1}$
$=\frac{2.3-1}{3+1}=\frac{5}{4}$
cho tanx = \(\sqrt{3}\) tính A = \(\dfrac{sin^2x}{sin^2x-cos^2x}\)
cho cotx = -\(\sqrt{3}\) tính A = \(\dfrac{sinx-4cosx}{2sinx-cosx}\)
1. cho 180 độ < x < 250 độ. kết quả đúng là
A. sinx>0, cosx>0
B. sinx<0, cosx<0
C. sinx>0, cosx<0
D. sinx<0, cosx>0
2. cho \(\dfrac{3\pi}{4}\) <x< \(\dfrac{3\pi}{2}\) kết quả đúng là
A. tanx>0, cotx>0
B. tanx<0, cotx<0
C. tanx>0, cotx<0
D. tanx<0, cotx>0
3.
cho 2\(\pi\) < x <\(\dfrac{5\pi}{2}\) kết quả đúng là
A. tanx>0, cotx>0
B. tanx<0, cotx<0
C. tanx>0, cotx<0
D. tanx<0, cotx>0
4.
cho 630 độ < x <720 độ. kết quả đúng là
A. sinx>0, cosx>0
B. sinx<0, cosx<0
C. sinx>0, cosx<0
D. sinx<0, cosx>0
Nghiệm phương trình: cosx ( cosx + 2 sinx ) + 3 sinx ( sinx + 2 ) sin 2 x - 1 = 1
A. x = ± π 4 + k2π, k ∈ Z
B. x = - π 4 + kπ, k ∈ Z
C. x = - π 4 + k2π, x = - 3 π 4 + k2π, k ∈ Z
D. x = - π 4 + k2π, k ∈ Z
Giải phương trình sau: cosx ( cosx + 2 sinx ) + 3 sinx ( sinx + 2 ) sin 2 x - 1 = 1
A. x = - π 4 + k2π
B. x = - 3 π 4 + k2π
C. x = ± π 4 + kπ
D. Cả A và B đúng
chứng minh rằng \(\dfrac{1}{cosx}\)- tanx = \(\dfrac{cosx}{1+sinx}\)
1.cho cotx = -6 tính F = \(\dfrac{sinx-3cosx}{cosx+2sinx}\)
2. cho cotx = 1 tính I = \(\dfrac{sin^3x-4cos^3x}{sinx+3cosx}\)
3. cho cotx = 3 tính I = \(\dfrac{2sin^3x+cos^3x}{4sinx-6cosx}\)
1) cho góc x (0 độ \(\le\) x < 90 độ) thỏa mãn \(sinx=\dfrac{4}{5}\) giá trị của \(tanx\) là
2) cho góc x (0 độ \(\le\) x \(\le\) 180 độ) thỏa mãn \(cosx=\dfrac{1}{3}\) giá trị của \(sinx\) là
3) cho \(cosx=\dfrac{1}{2}\) tính \(P=3sin^2x+4cos^2x\)
Giải phương trình:
sinx + tanx = \(\frac{1}{cosx}\)- cosx
Từ phương trình 2 (sinx + cosx)= tanx + cotx, ta tìm được cosx có giá trị bằng
A. 1
B. 2
C. 3
D. 4