Cho Tam giác nhọn ABC.Gọi M là trung điểm của AB. Từ M kết đường thẳng song song với BC và cắt AC tại N, từ N kẻ đường thẳng song song với AB và cắt BC tại ấp a) chứng minh tứ giác BMNP là hình bình hành b) Gọi Q là điểm đối xứng của P qua N. Chứng minh rằng tứ giác AQCP là hình bình hành c)tâm giác ABC cần thêm điều kiện gì để tứ giác AQCP là hình thoi
a: Xét tứ giác BMNP có
BM//NP
MN//BP
Do đó: BMNP là hình bình hành
b:
Xét ΔABC có
M là trung điểm của AB
MN//BC
Do đó: N là trung điểm của AC
Xét tứ giác APCQ có
N là trung điểm chung của AC và PQ
=>APCQ là hình bình hành
c: Xét ΔABC có
N là trung điểm của AC
NP//AB
Do đó: P là trung điểm của CB
Để AQCP là hình thoi thì AP=CP
mà CP=BC/2
nên AP=BC/2
Xét ΔABC có
AP là đường trung tuyến
\(AP=\dfrac{BC}{2}\)
Do đó: ΔABC vuông tại A
=>\(\widehat{BAC}=90^0\)