b: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng vớiΔACF
=>AB/AC=AE/AF
=>AB*AF=AC*AE
c: XétΔABC có
BE,CF là đường cao
BE cắt CF tại H
=>H là trực tâm
=>AH vuông góc BC
b: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng vớiΔACF
=>AB/AC=AE/AF
=>AB*AF=AC*AE
c: XétΔABC có
BE,CF là đường cao
BE cắt CF tại H
=>H là trực tâm
=>AH vuông góc BC
Cho tam giác nhọn ABC, ba đường cao AD, BE và CF cắt nhau tại H. a) Chứng minh tam giác AEB đồng dạng với tam giác AFC. b) Chứng minh tam giác AEF đồng dạng với tam giác ABC. c) Chứng minh BH.BE + CH.CF = BC2
Bài 7: Cho ABC nhọn có các đường cao AD,BE,CF cắt nhau tại H.
a. Chứng minh AB.AF=AC.AE
b. Chứng minh AEF ABC.
c. Chứng minh Góc BEF=BCF
d. Chứng minh BH.BE+CH.CF=BC2.
e. Chứng minh EH là phân giác
g. Chứng minh : AF/FB.DB/DC.CE/EA=1
GIẢI GIÚP MIK VS Ạ
cho tam giác abc nhọn (ab<ac) vẽ đường cao be và cf cắt nhau tại h.
a chứng minh tam giác abe đồng dạng với tam giác acf
b chứng minh he.hb=hf.hc
c. ah cắt bc tại d . Chứng minh: BH.BE+CH.CF=BC2
Cho tam giác ABC nhọn đường cao AD BE CF cắt nhau tại H .Chứng minh Tam giác HFB đồng dạng với tam giác HEC chứng minh BH.BE=BD.BC Chứng minh BH.BE + CH.CF =BC^2
Cho tam giác nhọn ABC. Các đường cao BE, CF cắt nhau tại H
. a) Chứng minh ∆BHF ∽ ∆CHE
b) Chứng minh HE.HB=HF. HC
c) Từ E hạ EI BC ( I thuộc BC). Biết EC=15cm; IC= 9cm. Chứng minh ∆BEC ∽∆ EIC. Tính BC và BE.
d) Chứng minh: BH.BE+CH.CF= BC2
Cho tam giác nhọn ABC có các đường cao AD, BE và CF đồng quy tại H. Chứng minh:
a) Δ A F N ∽ Δ M D C ; ;
b) H là giao điểm các đường phân giác của Δ D EF ;
c) B H . B E + C H . C F = B C 2 .
cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE và CF cắt nhau tại H. a, Chứng minh AF.AB = AE. AC b,Chứng minh BH.BE=BD.BC c, Chứng minh BF.BA+ CE.CA=BC^2'
Cho tam giác ABC nhọn. Hai dường cao BE và CF cắt nhau tại H. Cho AH=10; BH=5; HE=6.
a) Chứng minh AE.AC=AF.AB
b) CHứng minh góc AFE bằng góc ACB
c) Kẻ HM song song AC (M thuộc BC). Tính HM, EC.
d) Chứng minh BH.BE + CH.CF =BC2.
Cho tam giác ABC nhọn (AB < AC), 3 đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh: tam giác ABE đồng dạng ACF từ đó suy ra AB.AF=AC.AE
b) Chứng minh: AFE = ACB
c) Đường thẳng EF cắt AD và tia CB lần lượt tại I và K. Chứng minh: KF. IE = KE . IF
Mong các bạn giúp mình :D