a: Xét ΔABD và ΔMCD có
DA=DM
\(\widehat{ADB}=\widehat{MDC}\)
DB=DC
Do đó: ΔABD=ΔMCD
b: Xét ΔAHD vuông tại H và ΔMKD vuông tại K có
DA=DM
\(\widehat{ADH}=\widehat{MDK}\)
Do đó: ΔAHD=ΔMKD
Suy ra: AH=MK
a: Xét ΔABD và ΔMCD có
DA=DM
\(\widehat{ADB}=\widehat{MDC}\)
DB=DC
Do đó: ΔABD=ΔMCD
b: Xét ΔAHD vuông tại H và ΔMKD vuông tại K có
DA=DM
\(\widehat{ADH}=\widehat{MDK}\)
Do đó: ΔAHD=ΔMKD
Suy ra: AH=MK
Cho tam giác nhọn ABC (AB < AC). Gọi D là trung điểm của BC. Trên tia đối của tia DA lấy điểm M sao cho DM = DA.
a) Chứng minh AC = BM và AC // BM.
b) Chứng minh ∆ A B M = ∆ M C A .
c) Kẻ A H ⊥ B C , M K ⊥ B C ( H , K ∈ B C ) . Chứng minh BK = CH.
d) Chứng minh HM // AK.
cho tam giác ABC nhọn AB<AC gọi D là trung điểm của BC Trên tia đối của tia DA lấy điểm M sao cho DM=DA a,CMRtam giác ACD=tam giác MBD và AC//BM b,góc ABM= góc MCA c,Kẻ AH vuông góc với BC,MK vuông BC(H,K thuộc BC)lấy E thuộc AH sao cho AE=2/3AH,lấy F thuộc MK sao cho FM=2/3MK.Chứng minh điểm E,D,F thẳng hàng
Cho tam giác ABC có ba góc nhọn (AB < AC) và M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh: Tam giác AMB = Tam giác DMC
b) Chứng minh: AB // CD
c) Vẽ AH vuông góc với BC (H thuộc BC). Trên tia đối của tia HA lấy điểm E sao cho HE = HA. Chứng minh: ME = MD.
d) Gọi K là trung điểm của ED. Chứng minh MK vuông góc với BC.
Cho tam giác nhọn ABC (AB < AC). Gọi D là trung điểm của BC. Trên tia đối của tia DA lấy điểm M sao cho DM = DA.
a) Chứng minh AC = BM và AC // BM.
b) Chứng minh ΔABM =ΔMCA.∆ABM =∆MCA.
c) Kẻ AH ⊥BC, MK⊥ BC (H, K ∈ BC)AH ⊥BC, MK⊥ BC (H, K ∈ BC). Chứng minh BK = CH.
d) Chứng minh HM // AK.
Bìa 1:
Cho tam giác nhọn ABC(AB < AC). Gọi M là trung điểm của BC. Trên tia đối của
tia MA lấy điểm D sao cho M là trung điểm của AD.
a) Chứng minh rằng: AMBA = AMCD.
b) Kẻ AH vuông góc với BC tại H và DK vuông góc với BC tại K. Chứng minh rằng: AH= DK.
c) Tia phân giác của ABC cắt AH và AM lần lượt tại I và E. Tia phân giác của BCD cắt KD và
MD lần lượt tại J và F. Chứng minh rằng: ABIA = ACJD.
d) Chứng minh rằng: I, M, J thẳng hàng.
cho tam giác ABC nhọn AB<AC.Gọi D là trung điểm của BC,trên tia đối của DA sao cho DM=DA
a) chứng minh:AC=BM,AC//BM
b) chứng minh tam giác ABM=tam giác MCK
c) kẻ A vuông góc BC,MK vuông góc ( HK thuộc BC ) .Chứng minh BK=CH.
Bài 1: cho tam giác ABC gọi K,D lần lượt là trung điểm của AB,BC : trên tia đối của tia DA lấy M sao cho DM=DA, trên tia đối của KM lấy N sao cho KM= KN. Chứng minh A là trung điểm của NC
Bài 2: Cho tam giác ABC (AB<AC) từ trung điểm M của BC kẻ đường vuông góc với tia phân giác của góc A cắt AB, AC và tia phân giác của góc A tại D,E,H. Chứng minh rằng BD=CE
Bài 3: Cho tam giác ABC vẽ BH vuông góc với AC (H thuộc AC) gọi M là trung điểm của AC biết góc ABH= góc HBM= góc MBC. Tính các góc cn lại của tam giác ABC
GIÚP MK VỚI MK ĐANG GẤP
cho tam giác nhọn ABC (AB<AC).Gọi D là trung điểm của BC. Trên tia tới DA lấy diểm M sao cho DM=DA.
a)CM: tam giác ADC= tam giác MDB.
b)CM: AC= BM và AC//BM.
c) CM: tam giác ABM = tam giác MCA.
d) Kẻ AH vuông góc với BC, MK vuông góc với BC (H,K thuộc BC). CM: BK=DA.
Bài 2. Cho tam giác ABC nhọn có AB > AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA .
a) Chứng minh: tam giác AMB = tam giác DMCDMC và AB // CD b) Kẻ AH vuông góc BC tại H; DK vuông góc BC tại K. Chứng minh: AH//DK và AH = DK.
c) Trên tia đối của tia KD lấy điểm E sao cho KE = KD.Chứng minh: ME = MA.
d)Chứng minh: AE//BC. ( vẽ hình , ghi giả thuyết , kết luận cho mình nhakk ()