Xét ΔABF và ΔDCF có
FA=FD
\(\widehat{AFB}=\widehat{DFC}\)
FB=FC
Do đó: ΔABF=ΔDCF
Xét ΔABF và ΔDCF có
FA=FD
\(\widehat{AFB}=\widehat{DFC}\)
FB=FC
Do đó: ΔABF=ΔDCF
cho tam giác nhọn có AB nhỏ hơn AC lấy F là trung điểm của BC trên tia AF lấy điểm D sao cho F là trung điêm của AD chứng minh tam giác ABF bằng tam giác DCF
cho tam giác nhọn có AB nhỏ hơn AC lấy F là trung điểm của BC trên tia AF lấy điểm D sao cho F là trung điêm của AD chứng minh AC song song BD
cho tam giác nhọn có AB nhỏ hơn AC lấy F là trung điểm của BC trên tia AF lấy điểm D sao cho F là trung điêm của AD chứng minh AC song song với BD
cho tam giác nhọn có AB nhỏ hơn AC lấy F là trung điểm của BC trên tia AF lấy điểm D sao cho F là trung điêm của AD chứng minh AC song song với BD
cho tam giác nhọn có AB nhỏ hơn AC lấy F là trung điểm của BC trên tia AF lấy điểm D sao cho F là trung điêm của AD chứng minh DK vuông góc với AH
cho tam giác nhọn có AB nhỏ hơn AC lấy F là trung điểm của BC trên tia AF lấy điểm D sao cho F là trung điêm của AD a. hãy vẽ AH vuông góc với BC . trên tia AH lấy điêm K sao cho H là trung điểm của AK . chứng minh BD = AC =CK
cho tam giác nhọn có AB nhỏ hơn AC lấy F là trung điểm của BC trên tia AF lấy điểm D sao cho F là trung điêm của AD hãy vẽ hình
Cho tam giác ABC có 3 góc nhọn, D là trung điểm của BC trên tia AD lấy điểm E sao cho D là trung điểm của AE
a/ chứng minh: tam giác ABD = tam giác ECD
b/ Chứng minh : AB // CE
c/ Gọi F là trung điểm AC, trên tia đối AB lấy điểm K sao cho AB = KA cm E,F,K thẳng hàng
Cho tam giác ABC có AM = AC. Tia phân giác của góc BAC cắt BC tại D.
a/ Chứng minh tam giác ABD = tam giác ACD.
b/ Trên tia đối của tia AD lấy điểm E sao cho AE = AD và trên tia đối của tia AB lấy điểm F sao cho AF = AB. Chứng minh AF = AB.
c/ Gọi H là trung điểm của FC. Chứng minh AH là phân giác của góc CAF.
d/ Chứng minh AH // BC