a: Xét tứ giác OHCK có
góc OHC+góc OKC=180 độ
=>OHCK là tứ giác nội tiếp
b: Vì góc BFC=góc BKC=90 độ
nên BFKC nội tiếp đường tròn đường kính BC
a: Xét tứ giác OHCK có
góc OHC+góc OKC=180 độ
=>OHCK là tứ giác nội tiếp
b: Vì góc BFC=góc BKC=90 độ
nên BFKC nội tiếp đường tròn đường kính BC
cho△ABC có ba góc nhọn nội tiếp đường tròn tâm O , bán kính R. Hạ các đường cao AH,BK của tam giác . các tia AH,BK lần lượt cắt (O) tại các điểm thứ hai là D;E.
a)Chứng minh tứ giác AKHB nội tiếp một đường tròn. Xác định tâm của đường tròn đó
b)chứng minh rằng :HK song song với DE
cho tam giác abc nhọn nội tiếp đường tròn tâm o bán kính R, hai đường cao BM và CN cắt nhau tại H.
a) chứng minh tứ giác BNMC nội tiếp. xác định tâm I của đường tròn ngooaij tiếp tứ giác này
b) chứng minh tam giác AMN đồng dạng tam giác ABC
c) chứng minh OI // AH
d) E là giao điểm của AH và BC, chứng minh MH là phân giác của góc NME
P/s: mình cần câu d thôi ạ
Cho tam giác ABC có ba góc nhọn. Đường tròn (O; R) có đường kính BC cắt AB, AC lần lượt tại F và E; BE cắt CF tại H
a, Chứng minh tứ giác AFHE nội tiếp. Từ đó, xác định tâm I của đường tròn ngoại tiếp tứ giác này
b, Tia AH cắt BC tại D. Chứng minh HE.HB = 2HD.HI
c, Chứng minh bốn điểm D, E, I, F cùng nằm trên một đường tròn
B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF
d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.
B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE
c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF
d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC
B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )
a) Chứng minh tứ giác OBAC nội tiếp
b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD
c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA
d) Tính diện tích tam giác BDC theo R
B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H
a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC
c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF
d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R
B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.
a) Chứng minh tứ giác AKHF nội tiếp đường tròn.
b) Chứng minh hai cung CI và CJ bằng nhau.
c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau
B6: Cho tam giác ABC nhọn nội tiếp đường tròn ( O; R ),các đường cao BE, CF .
a)Chứng minh tứ giác BFEC nội tiếp.
b)Chứng minh OA vuông góc với EF.
Cho tam giác ABC nhọn có các đường cao AE, BK,CI cắt nhau tại H
a, Chứng minh rằng tứ giác EHKC, BIKC nội tiếp đường tròn
b, Chứng minh AE, BK,CI là tia phân giác của tam giác IEK
c, So sánh bán kính đường tròn ngoại tiếp tam giác ABH và tam giác BHC
Cho tam giác ABC có ba góc nhọn AB<AC 3 đường cao AD, BE, CF cắt nhau ở H
1) chứng minh tứ giác BFEC nội tiếp. Xác định tâm o của đường tròn ngoại tiếp tứ giác này
2) Gọi I là trung điểm của AH. Chứng minh IE là tiếp tuyến của đường tròn o
3) Vẽ CI cắt đường tròn o tại M khác C, EF cắt AD tại K. Chứng minh ba điểm B, K, M thẳng hàng
Cho tam giác ABC nhọn nội tiếp đường tròn (O), 2 đường cao BE và CF của tam giác ABC cắt nhau tại H. Chứng minh: a. Tứ giác BCEF nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác BCEF. b. CM: AE.AC = AF.AB c. Tia AO cắt đường tròn (O) tại P, cắt EF tại Q. CM AP vuông góc với EF
1. Cho tam giác abc nhọn nội tiếp đường tròn tâm O. Hai đường cao BE, CF của tam giác ABC cắt nhau tại H
a) Chứng minh tứ giác BFEC nội tiếp đường tròn
b) Chứng minh rằng AF.AB=AE.AC
c) Kẻ đường kính AD của đường tròn tâm O. Chứng minh tứ giác BHCD là hình bình hành
Cho tam giác ABC có ba góc nhọn. Các đường cao AH và BK cắt nhau tại I.
a/ Chứng minh rằng tứ giác CHIK nội tiếp.
b/ ABHK nội tiếp. Xác định tâm của đường tròn đi qua các điểm A, B, H,K.