a: góc AKB=góc AHB=90 độ
=>AKHB nội tiếp đường tròn đường kính AB
=>Tâm là trung điểm của AB
b: Gọi giao của AH và BK là M
ABHK là tứ giác nội tiếp
=>góc AHK=góc ABK
=>góc AHK=góc ADE
=>HK//DE
a: góc AKB=góc AHB=90 độ
=>AKHB nội tiếp đường tròn đường kính AB
=>Tâm là trung điểm của AB
b: Gọi giao của AH và BK là M
ABHK là tứ giác nội tiếp
=>góc AHK=góc ABK
=>góc AHK=góc ADE
=>HK//DE
cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Hạ các đường cao AH, BK của tam giác. Các tia AH, BK lần lượt cắt (O) tại các điểm thứ hai là D,E
a, CM tứ giác ABHK nột tiếp đường tròn. Xác định tâm dduongf tròn đó
b, CM HK// DE
giúp tôi câu c mọi người ơi
bài 1 cho tam giác ABC nhọn nội tiếp (O,R). hạ các đường cao AH và BK của tam giác. các tia AH và BK lần lượt cắt O tại điểm thứ hai là D và E.
a. chứng minh tứ giác ABHK nội tiếp. tìm tâm của đường tròn đó
b.chứng minh rằng HK song song với DE.
c. cho (O) và dây AB cố định, điểm C di động trên (O) sao cho tam giác ABC nhọn. CMR độ dài bán kính đương tròn ngoại tiếp tam giác CHK không đổi.
Cho tam giác ABC nhọn nội tiếp trong một đường tròn tâm O bán kính R. Hai đường cao AH,BK cắt nhau tại I và lần lượt cắt đường tròn tâm O tại N và M. Chứng minh rằng:
a) CN=CM
b) Tứ giác AKHB nội tiếp được trong đường tròn
c) KH//MN
d)OC vuông góc HK
e) AI.IN=BI.IM
B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF
d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.
B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE
c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF
d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC
B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )
a) Chứng minh tứ giác OBAC nội tiếp
b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD
c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA
d) Tính diện tích tam giác BDC theo R
B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H
a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC
c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF
d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R
B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.
a) Chứng minh tứ giác AKHF nội tiếp đường tròn.
b) Chứng minh hai cung CI và CJ bằng nhau.
c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau
B6: Cho tam giác ABC nhọn nội tiếp đường tròn ( O; R ),các đường cao BE, CF .
a)Chứng minh tứ giác BFEC nội tiếp.
b)Chứng minh OA vuông góc với EF.
Tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm (O). Đường cao BK và CH lần lượt cắt đường tròn ( O ) tại M và N.
a. Chứng minh BCKH nội tiếp.
b. Chứng minh MN song song HK.
Tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm (O). Đường cao BK và CH lần lượt cắt đường tròn ( O ) tại M và N.
a. Chứng minh BCKH nội tiếp.
b. Chứng minh MN song song HK.
Cho tam giác ABC có ba góc nhọn. Các đường cao AH và BK cắt nhau tại I.
a/ Chứng minh rằng tứ giác CHIK nội tiếp.
b/ ABHK nội tiếp. Xác định tâm của đường tròn đi qua các điểm A, B, H,K.
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O, đường cao BH và CK lần lượt các đường tròn tại E và F
a) Chứng minh rằng tứ giác BKHC nội tiếp
b) Chứng minh OA vuông góc với EF và EF song song với HK
c) Gọi I là giao điểm của BH và CK. Chứng minh rằng bán kính đường tròn ngoại tiếp tam giác AIB bằng bán kính đường tròn ngoại tiếp tam giác BIC