Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H.a) Chứng minh rằng : ΔABE ∽ ΔACF. Từ đó suy ra AF. AB = AE. AC b) Chứng minh rằng : ΔAEF ∽ ΔABC. c) Vẽ DM vuông góc AC tại M. Gọi K là giao điểm của CH và DM . Chứng minh rằng CDBD=CMEMvà BHEH=DKMKd) Chứng minh rằng AH. AD + CH. CF = CD4CM2.
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔABE\(\sim\)ΔACF
Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)
hay \(AF\cdot AB=AE\cdot AC\)
b: Ta có: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)
nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\widehat{EAF}\) chung
Do đó: ΔAEF\(\sim\)ΔABC