a) Xét ΔAEH vuông tại E và ΔBDH vuông tại D có
\(\widehat{AHE}=\widehat{BHD}\)(hai góc đối đỉnh)
Do đó: ΔAEH\(\sim\)ΔBDH(g-g)
a) Xét ΔAEH vuông tại E và ΔBDH vuông tại D có
\(\widehat{AHE}=\widehat{BHD}\)(hai góc đối đỉnh)
Do đó: ΔAEH\(\sim\)ΔBDH(g-g)
Cho tam giác ABC( 3 góc nhọn ) có AD và BE lá các đường cao cắt nhau tại H:
a, Chứng minh tam giác AEH đồng dạng tam giác BDH
b, Chứng minh HA.ED=AB.HE
c, Nếu AC=5cm, AD=3cm tính tỉ số DB/DH
d, CH cắt AB tại F, chứng minh rằng HD/AD+HE/BE+HF/CF=1
Giúp mình với trước 11h giờ mình phải nộp rồi
Cho tam giác nhọn ABC (AB<AC), các đường cao AD,BE và CF cắt nhau tại H.
a) Chứng minh rằng: Tam giác ABC đồng dạng tam giác ACF và AB.AF = AC.AE
b) Chứng minh rằng: góc AED = góc ACB
c) Gọi M là trung điểm của BC, K là giao điểm của đường thẳng EF và đường thẳng BC. Chứng minh BC2 = 4.MD.MK
Cho tam giác ABC nhọn(AB<AC) có 3 đường cao AD,BE,CF cắt nhau tại H
a)Chứng minh tam giác ABE và tam giác ACF đồng dạng với nhau
b)Chứng minh DB.BC=Ab.BF
c)Chứng minh góc AFE=góc ACB
Cho tam giác ABC có 3 góc nhọn. Ba đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh: tam giác AEB đồng dạng với tam giác AFC. Tính tỉ số đồng dạng với AB=4cm, AC=6cm.
b) Chứng minh: tam giác AEF đồng dạng với tam giác ABC.
c) Kéo dài EF và BC cắt nhau tại I. Gọi M là trung điểm của BC. Chứng minh: IE.IF=IM^2-BC^2/4.
d) Gọi N là trung điểm của AH. Chứng minh: MN vuông góc với EF.
cho tam giác ABC có 3 đường cao AD, BE, CF cắt nhau tại H
a, Chứng minh: tam giác ABC đồng dạng với tam giác CBF
b, Chứng minh: AH . HD = CH . HF
c, Chứng minh: tam giác BDF đồng dạng với tam giác ABC
d, Gọi K là giao điểm của DE và CF. Chứng minh rằng: HF . CK = HK . CF
Cho tam giác abc có ba góc nhọn các đường cao AD, BE, CF cắt nhau tại H. Chứng minh rằng
a) ΔABE đồng dạng với ΔACF
b) HE.HB=HF.HC và ΔFHE đồng dạng với ΔBHC
c) H là giao điểm các đường phân giác của ΔDEF
d) \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\)
e) BH.BE+AH.AD=AB2
Giúp mình với mọi người!!!
Cho tam giác ABC nhọn ( AB < AC ) có ba đường cao AD , BE , CF cắt nhau tại H.
a ) Chứng minh : tam giac AEB đồng dạng tam giac AFC
b ) Chứng minh : AF.AB = AE.AC và tam giac AEF đồng dạng với tam giac ABC
c ) Gọi K là giao điểm của AH và EF . Chứng minh : KH.AD = AK.HD
Bài 10: Cho ABC nhọn có các đường cao AE, CD cắt nhau tại H (E BC, D AB).
a) Chứng minh: ABE ∽ CBD b) Chứng minh: HD . HC = HA.HE c) Nếu BD = 3cm, DC = 4cm. Tính tỉ số AH
DH
Bài 11: Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau tại H. a) Cm: ABE và ACF đồng dạng. b) Cm: HE.HB = HC.HF c) Cm: góc AEF bằng góc ABC. d) Cm: EB là tia phân giác của góc DEF.
cho tam giác abc có 3 góc nhọn(AB<AC). Đường cao AI,BE cắt nhau tại H. Chứng minh tam giác AEH đồng dạng với tam giác BIH. Vẽ IM vuông góc với AB tại M. Chứng minh IB.IC=HC.IM. Kẻ CH cắt AB tại F. Qua M vẽ đường thẳng song song với EF cắt AC tại N. Chứng minh:In vuông góc AC