Cho tam giác ABC nhọn, nội tiếp đường tròn (O). Các đường cao AD; BE; CF của tam giác
ABC cùng đi qua trực tâm H.
1) Chứng minh tứ giác BFEC nội tiếp;
2) Kẻ đường kính AK của đường tròn (O). Chứng minh tam giác ABD đồng dạng với tam giác
AKC và AB.AC = 2. AD. R;
3) Gọi M là hình chiếu vuông góc của C trên AK. Chứng minh rằng MD song song với BK.
4) Giả sử BC là dây cố định của đường tròn (O) còn A di động trên cung lớn BC. Tìm vị trí
điểm A để diện tích tam giác AEH lớn nhất.
CHO tam giác ABC có 3 góc nhọn (AB<AC) NỘI TIẾP tam giác đường tròn (o) gọi H là trực tâm và M, N, P lần lượt là chân đường cao kẻ từ các đỉnh A, B, C của tam giác ABC.
a) CM:các tứ giác APHN và BPNC nội tiếp
b) CM; H LÀ tâm đường tròn nội tiếp tam giác MNP
VẼ hình hộ mk vs ạ
Cho tam giác nhọn ABC(AB<AC) nội tiếp đường tròn (O;R). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tai H.
a, Chứng minh rằng các tứ giác BFHD, BFEC nội tiếp đường tròn.
b,Chứng minh rằng FH là tia phân giác của góc DFE và H là tâm đường tròn nội tiếp tam giác DEF.
c,Gọi M là trung điểm của cạnh BC. Chứng minh rằng OM//AD và tứ giác DMEF nội tiếp.
d,Gọi N là giao điểm của AD và EF .Chứng minh
1/HN-1/HĐ=2/AH
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O đường kính r các đường cao AD BE CF cắt nhau tại H
a)Chứng minh tứ giác BDHF , BCEF nội tiếp
b) cm AE.AC=AB.AF
c) cm FC là tia phân giác góc DFE
cho tam giác ABC có ba góc nhọn . các đường cao AD,BE,CF của tam giác ABC cắt nhau tại H
a) Chứng minh CEHD nội tiếp trong một đường tròn . xác định vị trí tâm O của đường tròn ngoại tiếp tứ giác CEHD
b) chứng minh góc FEH= góc DEH
Chứng minh H là tâm đường tròn nội tiếp tam giác DEF
c)cho CH= 4cm. Tính độ dài đường tròn (O) và diện tích hình tròn (O)
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O, các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng EF cắt (O) tại M và N.
a, Chứng minh các tứ giác BHDF và BFEC nội tiếp
b, Chứng minh AM=AN
c, Chứng minh AM là tiếp tuyến của đường tròn ngoại tiếp tam giác MHD
Cho tam giác ABC có các góc là góc nhọn và nội tiếp đường tròn tâm (O). Tiếp tuyến của đường tròn tâm (O) tại B,C cắt nhau tại D
a) Chứng minh OCDB nội tiếp
b) Gọi H là trực tâm của tam giác ABC. M là trung điểm của BC
Chứng minh AH=2OM
1. Cho tam giác abc nhọn nội tiếp đường tròn tâm O. Hai đường cao BE, CF của tam giác ABC cắt nhau tại H
a) Chứng minh tứ giác BFEC nội tiếp đường tròn
b) Chứng minh rằng AF.AB=AE.AC
c) Kẻ đường kính AD của đường tròn tâm O. Chứng minh tứ giác BHCD là hình bình hành