XétΔNMD vuông tại M và ΔNKD vuông tại K có
ND chung
\(\widehat{MND}=\widehat{KND}\)
Do đó: ΔNMD=ΔNKD
Suy ra: DM=DK
XétΔNMD vuông tại M và ΔNKD vuông tại K có
ND chung
\(\widehat{MND}=\widehat{KND}\)
Do đó: ΔNMD=ΔNKD
Suy ra: DM=DK
cho tam giác MNP vuông tại M, đường phân giác ND( D thuộc MP). Kẻ ME vuông góc với ND (E thuộc ND). ME cắt NP tại K. Chứng minh a) DK vuông góc với NP b) Kẻ MH vuông góc với NP( H thuộc NP). Gọi I là giao điểm của MH và ND. Chứng minh KI song song với MP
Cho tam giác MNP vuông tại M, đường phân giác ND(D thuộc MP). Kẻ ME vuông góc với ND(E thuộc ND), ME cắt NP tại K. Chứng minh:
a.Tam giác MNE = Tam giác KNE
b. DK vuông góc NP
c. Kẻ MH vuông góc với NP(H thuộc NP). Gọi I là giao điểm của MH và ND. Chứng minh KI song song với MP
Cho tam giác MNP có MN=3cm MP= 4cm NP=5cm a, Chứng tỏ rằng tam giác MNP vuông tại M b, vẽ tia phân giác ND(D thuộc MP) từ D vẽ DE vuông góc với NP (E thuộc NP) chứng minh DM=DE c, ED cắt MN tại F chứng minh DE
Cho tam giác MNP cân tại M có MN =MP 8cm , NP=10cm.
Kẻ MI vuông góc với NP (I thuộc NP)
a chứng minh rằng: IB =IC
b. Kẻ IH vuông góc với MN (H thuộc MN),IK vuông với MP (K thuộc MP). Chứng minh IH=IK
Cho tam giác MNP vuông tại M, có góc N= 60độ tia phân giác của góc N cắt MP tại Q .kẻ QH vuông với NP tại Hà (H thuộc NP) a) chứng minh rằng tâm giác MNQ = tam giác HNQ b) chứng minh rằng tam giác MNH là tâm giác đều
Cho tam giác MNP vuông tại M,đường phân giác ND của góc MNP .Kẻ ME vuông góc với ND tại E,ME cắt NP tại K.Kẻ MH vuông góc với NP tại H,MH cắt ND tại I
a) CM tam giác MNK cân
b)CM tam giác NMD=tam giác NKD.Từ đó suy ra DK vuông góc NP và tam giác MDK cân
c)Chứng minh MK là tia phân giác của góc HMP
d)CM IK song song MP
MÌnh cần gấp lắm bài này lớp 7 nhé
Cho tam giác MNP vuông tại M (MN < MP). Vẽ tia phân giác NI (I thuộc MP), từ I kẻ IK vuông góc với NP tại K. Gọi Q là giao điểm của tia KI và tia NM. Chứng minh rằng: 1) ANMK là tam giác cân 2) ANQP là tam giác cân 3) MK // QP
Cho tam giác MNP vuông tại M, Kẻ MI vuông góc với NP tại I. Vẽ MK là tia phân giác của
IMP (K∈IP). Đường thẳng đi qua K và vuông góc với MP, cắt MP tại A.
1) Chứng minh KM là tia phân giác IKA.
2) Chứng minh IK < KP.
3) Gọi giao điểm của AK và MI là B. Chứng minh MK⊥BP và IA//BP.
cho tam giác MNP vuông tại N có góc M bằng 60 độ. tia phân giác của góc NMP cắt NP ở E . kẻ EK vuông góc với NP (K thuộc MP). Kẻ PT vuông góc với tia ME ( T thuộc tia ME) CM:
a) tam giác MNE = tam giác MKE
và ME vuông góc với NK
b)KM=Kp
c)EP>MN
d) ba đường thẳng MN,PT,KE đồng quy tại 1 điểm
(ko vẽ hình cx dc ạ)