Cho tam giác MNP vuông tại M có MN=4cmc ,NP=5cm.Trên tia đối của tia MN lấy điểm A sao cho MN=MA.
a) Chứng minh PN=PA.
b) Gọi B là trung điểm cua AP,đường thẳng NB cắt PM tại G.Tính MP;GP.
c) Đường trung trực của đoạn thẳng MP cắt MP tại I và cắt NP tại C.Chứng minh ba đường thẳng PM,NB và AC đồng quy.
d) Chứng minh IA+IP<NA+NP.
a: Xét ΔPAN có
PM vừa là đường cao, vừa là trung tuyến
=>ΔPAN cân tại P
b: \(PM=\sqrt{5^2-4^2}=3\left(cm\right)\)
Xét ΔPAN có
NB,PM là trung tuyến
NB cắt PM tại G
=>G là trọng tâm
GP=2/3*3=2cm
c: CI là trung trực của MP
=>I là trung điểm của MP và CI vuông góc MP tại I
Xét ΔMPN có
I là trung điểm của PM
IC//MN
=>C là trung điểm của PN
=>PM,NB,AC đồng quy