Cho tam giác MNP có MN=MP.Gọi A là trung điểm của NP a,Chứng minh rằng : Tam giác MNA = tam giác MPA b,Chứng minh rằng : MA là tai phân giác của góc NMP c,Chứng minh rằng MA vuông góc với NP d,Trên nửa mặt phẳng không chứa điểm M có bờ là đường thẳng NP vẽ điểm D sao cho DN =DP . Chứng minh rằng ba điểm M,A,D thẳng hàng
a: Xét ΔMNA và ΔMPA có
MN=MP
NA=PA
MA chung
=>ΔMNA=ΔMPA
b: ΔMNP cân tại M
mà MA là trung tuyến
nên MA là phân giác của góc NMP
c: ΔMNP cân tại M
mà MA là trung tuyến
nên MA vuông góc NP
d: DN=DP
nên D nằm trên trung trực của NP
mà MA là trung trực của NP
nên M,A,D thẳng hàng