Cho tam giác ABC (AB<AC) có ba góc nhọn, BD, CE là hai đường cao. Vẽ (B;BD) cắt đoạn CE tại K. Qua D vẽ đường thẳng vuông góc với BC cắt đường thẳng BA tại M và đoạn CE tại I.
a)CM: MK là tiếp tuyến của (B).
b)CM: CE.IK=CK.EK
cho nửa đường tròn đường kính ab trên cùng 1 nửa mặt phẳng vẽ 2 tiếp tuyến Ax By trên nửa đường tròn lấy điểm M vẽ tiếp tuyến tại M cắt Ax tại C và cắt By tại D.Nối AM và OC cắt nhau tại K, MB và OD cắt nhau tại I.
C/m: a/MKOI là hình chữ nhật
b/KI vuông góc vs AC
c/t/giác OAC đồng dạng vs t/giác DBOBài1 : Cho đường tròn (O,5cm) điểm M nằm bên ngoài đường tròn. Kể các tiếp tuyến MA, MB với đường tròn ( AB là tiếp điểm) biết góc AMB= 60 độ
a: Chứng minh AMB là tam giác đều
b: Tính chu vi tam giác AMB
c: Tia AO cắt đường tròn ở C; tứ giác BMOC là hình gì? Vì sao?
Bài 2 : Cho đường tròn (O) đường kính AB, gọi M là một điểm tùy ý trên đường tròn, xy là tiếp tuyến của đường tròn tại A, qua M kẻ MP vuông góc AB, MQ vuông góc xy
a: tứ giác APMQ là hình gì? Vì sao?
b: gọi I là trung điểm PQ. Chứng minh OI vuông góc AM
Bài1 : Cho đường tròn (O,5cm) điểm M nằm bên ngoài đường tròn. Kể các tiếp tuyến MA, MB với đường tròn ( AB là tiếp điểm) biết góc AMB= 60 độ
a: Chứng minh AMB là tam giác đều
b: Tính chu vi tam giác AMB
c: Tia AO cắt đường tròn ở C; tứ giác BMOC là hình gì? Vì sao?
Bài 2 : Cho đường tròn (O) đường kính AB, gọi M là một điểm tùy ý trên đường tròn, xy là tiếp tuyến của đường tròn tại A, qua M kẻ MP vuông góc AB, MQ vuông góc xy
a: tứ giác APMQ là hình gì? Vì sao?
b: gọi I là trung điểm PQ. Chứng minh OI vuông góc AM
Cho hình chóp S.ABCD có đáy ANCD là hình vuông với AB = 2a. Tam giác SAB vuông tại S, mp(SAB) \(\perp\) mp(ABCD). Biết góc tạo bởi đường thẳng SD và mp(SBC) bằng \(\varphi\) với \(\sin\varphi=\frac{1}{3}\). Tính VS.ABCD và khoảng cách từ C đến (SBD) theo a.
Cho đường tròn(O;R) có đường kính AB.Qua A và B vẽ lần lượt 2 tiếp tuyến (d) và (d') với đường tròn (O).Một đường thẳng qua O cắt đường thẳng (d) ở M và cắt đường thẳng (d') ở P.Từ O vẽ một tia vuông góc với MP và cắt đường thẳng (d') ở N.
a)CM: OM=OP và tam giác NMP cân
b)Hạ OI vuông góc với MN.CM:OI=R và MN là tiếp tuyến của đường tròn (O)
c)CM: AM.BN=R2
d)Tìm vị trí của M để diện tích tứ giác AMNB là nhỏ nhất.Vẽ hình minh họa.
1. cho 4 điểm E,B,C,D cùng nằm trên 1 đường thẳng thoả mãn \(\frac{DB}{DC}\)=\(\frac{EB}{EC}\) và 1 điểm A sao cho AE vuông góc với AD. CMR: AD,AE thứ tự là phân giác trong và ngoài của tam giác ABC
2. cho hình thang ABCD (BC//AD). gọi M,N lần lượt là 2 điểm trên AB, CD sao cho \(\frac{AM}{AB}\)=\(\frac{CN}{CD}\); đường thẳng MN cắt AC,BD tại E,F. CMR: ME=NF
1. Cho đường tròn tâm O đường kính AB, vẽ đường tròn tâm M đường kính OA. bán kính OC của đường tròn O cắt M tại D, vẽ CD vuông góc với AB. Tứ giác ADCH là hình gì?
2.Cho (O;R) Vẽ 2 bán kính OA;OB. Trên OA và OB lấy các điểm M,N sao cho OM=ON. Vẽ dây BC đi qua MN (M nằm giữa C và N)
a. So sánh MC và ND
b.Biết AOB=90 độ và CM=MN=MD. Tính OM theo R
3.Cho tam giác ABC nhọn nội tiếp đường tròn tâm O và cá góc A=45 độ. 2 đường tròn BE và CF cắt nhau tại E. CMR: B,E,O,F,C cùng nằm trên 1 đường tròn.
Cho đường tròn (O;R) và các tiếp tuyến AB ;AC cắt nhau tại A nằm ngoài đường tròn ( B;C là các tiếp điểm ) . Gọi H là giao điểm của BC và OA
a) CMR: Oa vuông góc với BC và OH.OA=R^2
b) Kẻ đường kính BD của đường tròn (O) và kẻ đường thẳng CK vuuong góc với BD ( K thuộc BD) CMR AO sông song với CD và AC.CD=CK.AO
c) Gọi I là giao điểm của AD và CK . CMR tam giác BIK và tam GIác CHK có diện tích bằng nhau