\(\Delta DAC\sim\Delta DBA\left(g.g\right)\Rightarrow\dfrac{AC}{BA}=\dfrac{DA}{DB}\). (1)
\(\Delta DFC\sim\Delta DBF\left(g.g\right)\Rightarrow\dfrac{FC}{BF}=\dfrac{DF}{DB}\). (2)
Lại có DA = DF (3) (tính chất hai tiếp tuyến cắt nhau)
Từ (1), (2), (3) suy ra \(\dfrac{AC}{BA}=\dfrac{FC}{BF}\Rightarrow AC.BF=FC.BA\).
Áp dụng định lý Ptoleme cho tứ giác ABFC nội tiếp ta có AC . BF + FC . BA = BC . AF
\(2.AC.BF=BC.2FH\Rightarrow AC.BF=BC.FH\Rightarrow\dfrac{AC}{BC}=\dfrac{FH}{FB}\Rightarrow\Delta BCA\sim\Delta BFH\left(c.g.c\right)\Rightarrow\dfrac{BA}{BC}=\dfrac{BH}{BF}\Rightarrow BH.BC=BA.BF=2OC.BF\).
P/s: Đây là tính chất kinh điển của tứ giác điều hòa