Xét ΔABC có
\(cosC=\dfrac{CA^2+CB^2-AB^2}{2\cdot CA\cdot CB}\)
=>\(\dfrac{26.4^2+49.4^2-AB^2}{2\cdot26.4\cdot49.4}=cos\left(47^020'\right)\)
=>\(3137.32-AB^2=2608.32\cdot cos\left(47^020'\right)\)
=>\(AB=\sqrt{3137.32-2608.32\cdot cos47^020'}\simeq37\left(cm\right)\)
Xét ΔABC có \(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}=\dfrac{BC}{sinA}\)
=>\(\dfrac{37}{sin47^020'}=\dfrac{26.4}{sinB}=\dfrac{49.4}{sinA}\)
=>\(\left\{{}\begin{matrix}sinB\simeq0.52\\sinA\simeq0.98\end{matrix}\right.\Leftrightarrow\widehat{B}\simeq31^019'\)
\(\widehat{A}=180^0-31^019'-47^020'=101^021'\)
\(c=\sqrt{a^2+b^2-2.a.b.cosC}\)
\(=\sqrt{49,4^2+26,4^2-2.26,4.49,4.cos47^o20'}\simeq37\)
Ta có:
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\left(26,4\right)^2+37^2-\left(49,4\right)^2}{2.26,4.37}\simeq-0,2\)
\(\Rightarrow\widehat{A}\simeq101,5^o\)
\(\Rightarrow\widehat{B}=180^o-101,5^o-47,3^o=31,2^o\)
Áp dụng định lí côsin ta có:
c2 = a2 + b2 - 2ab.cos C = 49,42 + 26,42 - 2 . 49,4 . 26,4 . cos
47°20' ≈ 1 369,58
⇒ c ~ 37
Áp dụng hệ quả của định lí côsin ta có:
Cos A = \(\dfrac{b^2+c^2-a^2}{^{2bc}}\) \(=\) \(\dfrac{26,4^2+37^2-49,4^2}{2.26,4.37}\) \(\rightarrow\) _0,19
\(\rightarrow\) \(Â\) ~ 101°3'
Khi đó B = 180° - \((Â+C)\) \(\rightarrow\)31°37’.