xét 2 tam giác HBA và ABC
H là góc chung
gC=gHAB
=>2 tam giác đồng dạng
\(\Rightarrow\)\(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB.AB=BH.BC\Rightarrow AB^2=BH.BC\)
xét 2 tam giác HBA và ABC
H là góc chung
gC=gHAB
=>2 tam giác đồng dạng
\(\Rightarrow\)\(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB.AB=BH.BC\Rightarrow AB^2=BH.BC\)
II. PHẦN HÌNH HỌC
Bài 1.Cho tam giác ABC vuông tạiA ,đường cao AH. Phân giác CD (Dϵ AB).Biết AB=4cm;AC=3cm
a) Tính BC AH;BH; HD; AD.
b) Chứng minh: ABAC đồng dạng ABHA
c) Chứng minh: AB2=BH.BC.
Cho tam giác ABC vuông tại A có đường cao AH gọi M là trung điểm của AH từ B kẻ đường thẳng vuông góc với BC cắt CM tại k
Chứng minh AB^2=BH.BC
b,TAM GIÁC ABK cân
Cho tam giác ABC vuông ở A, đường cao AH. Chứng minh rằng:
a) Tam giác ABC đồng dạng với tam giác HBA;
b) AB BH.BC 2 ;
c) AH BH.HC 2 .
Cho tam giác ABC vuông tại A có AB=3cm, BC=5cm, vẽ đường cao AH của tam giác ABC.
a) CM: tam giác ABC~ tam giác HBA
b) CM: AB^2=BH.BC, tính BH
c) Dựng đường p/g BD của tam giác ABC cắt AH ở E. Tính EH/EA. Tính EH
d) Tính diện tích tứ giác HEDC
Cho tam giác ABC vuông tại A có đường cao AH AB=18cm AC=24cm a) CM AB^2=BH.BC b) Kẻ phân giác CD của tam giác ABC. Tính DA c) Từ B kẻ đường thẳng vuông góc CD tại E và cắt AH tại F, trên đoạn CD lấy điểm G sao cho BA=BG. CM BG vuông góc FG
Cho tam giác ABC vuông có AC>AB, vẽ đường cao AH. Trên tia HC lấy điểm D sao cho HD=AH, Đường vuông góc với BC tại D cắt AC tại E.
a. Cm: tam giác HBA đồng dạng tam giác ABC và AB2=BH.BC
b. Cm: tam giác CDA đồng dạng tam giác CEB và AB= AE
c. Gọi M là trung diểm BE. Cm: góc BMH = Góc BCE
d. Tia AM Cắt BC tại G. Cm: (BG/BC) = HD/(AH+HC)
cho tam giác ABC vuông tại A, có AB =6cm , AC=8cm< vẽ đường cao AH và phân giác BD
a. tính BC, AH
b.chứng minh AB2 = BH.BC và AH2=BH.BC
c. vẽ đường phân giác AE của góc A ( E thuộc BC). tính AE,EC
d. gọi I là giao điểm của AH và BD , chứng minh AB . BI = BD.HB
e. Tính diệ tích tam giác ABH và BDC
Cho tam giác ABC vuông tại A có AB = 12cm, AC = 16cm, đường cao AH. Kẻ BE là phân giác của góc ABC ( E thuộc AC), BE cắt AH tại F.
a) Tính BC, AE
b) Chứng minh: tam giác HAB đồng dạng với tam giác HCA.
c) Chứng minh: AB2 = BH.BC
Cho tam giác ABC vuông ở A có AB=3cm,AC=4cm.Vẽ đường cao AH. a) chứng minh tam giác HBA đồng dạng tam giác ABC b) chứng minh AB2=BH.BC c) trên AH lấy điểm K sao cho AK=1,2cm.Từ K vẽ đường thẳng song song BC cắt AB và AC lần lượt tại M và N. Tính diện tích BMNC ( k cần vẽ hình cững đc cần lời giải chi tiết ạ ) cảm ơn !