Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thu Tuyền Trần Thạch

Cho tam giác ABC vuông tại, đường cao AH. Vẽ đường tròn (A; AH). Kẻ các tiếp tuyến BD, CE với đường tròn (D, E là các tiếp điểm khác H). Chứng minh: a) BC là tiếp tuyến của đường tròn (A; AH) b) BD = BH; CE = CH c)BD+CE=BC d) Chứng minh ba điểm D, A, E thẳng hàng HẾT.

Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 4:50

a: Xét (A;AH) có

AH là bán kính

BC\(\perp\)AH tại H

Do đó: BC là tiếp tuyến của (A;AH)

b: Xét (A) có

BH,BD là các tiếp tuyến

Do đó: BH=BD và AB là phân giác của góc HAD

Xét (A) có

CE,CH là các tiếp tuyến

Do đó: CE=CH và AC là phân giác của góc HAE

c: BD+CE

=BH+CH

=BC

d: AB là phân giác của góc HAD

=>\(\widehat{HAD}=2\cdot\widehat{HAB}\)

AC là phân giác của góc HAE

=>\(\widehat{HAE}=2\cdot\widehat{HAC}\)

Ta có: \(\widehat{HAD}+\widehat{HAE}=\widehat{EAD}\)

=>\(\widehat{EAD}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{EAD}=2\cdot\widehat{BAC}=180^0\)

=>E,A,D thẳng hàng


Các câu hỏi tương tự
Vũ Hà Linh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Thanh Bình
Xem chi tiết
jennie
Xem chi tiết
Nguyễn Khánh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Mẫn Tuệ
Xem chi tiết