Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ngô trung hiếu

Cho tam giác ABC vuống tại B có AB=6cm,AC=10cm,và đường cao BH.

a)Tính BC,diện tích tam giác ABC

b)Chứng minh:tam giác BAH và tam giác ABC đồng dạng và tính BH,AH,HC

c)Chúng minh:tam giác BHA và tam giác HBC đồng dạng

GIÚP MÌNH BÀI NÀY VỚI,MÌNH CẦN GẤP Ạ

Nguyễn Ngọc Huy Toàn
1 tháng 3 2022 lúc 19:24

a.Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(AC^2=BA^2+BC^2\)

\(\Rightarrow BC=\sqrt{AC^2-BA^2}=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)

\(S_{ABC}=\dfrac{1}{2}.BA.BC=\dfrac{1}{2}.6.8=24cm^2\)

b.Xét tam giác BAH và tam giác ABC, có:

\(\widehat{B}=\widehat{H}=90^o\)

Góc A: chung 

Vậy tam giác BAH đồng dạng tam giác ABC ( g.g )

\(\Rightarrow\dfrac{BH}{BC}=\dfrac{AB}{AC}\)

\(\Leftrightarrow\dfrac{BH}{8}=\dfrac{6}{10}\)

\(\Leftrightarrow10BH=48\Leftrightarrow BH=4,8cm\)

Áp dụng định lý pitago vào tam giác vuông ABH, có:

\(AB^2=AH^2+BH^2\)

\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{6^2-4,8^2}=\sqrt{12,96}=3,6cm\)

Áp dụng định lý pitago vào tam giác vuông ACH, có:

\(BC^2=CH^2+BH^2\)

\(\Rightarrow CH=\sqrt{BC^2-BH^2}=\sqrt{8^2-4,8^2}=\sqrt{40,96}=6,4cm\)

c. Xét tam giác BHA và tam giác BHC, có:

\(\widehat{AHB}=\widehat{AHC}=90^0\)

\(\widehat{ACH}=\widehat{BAH}\) ( cùng phụ với góc B )

Vậy tam giác BHA đồng dạng tam giác BHC ( g.g )

Trần Tuấn Hoàng
1 tháng 3 2022 lúc 19:26

a) -Xét △ABC vuông tại B:

\(AB^2+BC^2=AC^2\) (định lí Py-ta-go)

\(\Rightarrow BC=\sqrt{AC^2-AB^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)

\(S_{ABC}=\dfrac{AB.BC}{2}=\dfrac{6.8}{2}=24\left(cm^2\right)\)

b) -Xét △BAH và △ABC:

\(\widehat{AHB}=\widehat{ABC}=90^0\)

\(\widehat{BAC}\) là góc chung.

\(\Rightarrow\)△BAH∼△CAB (g-g)

\(\Rightarrow\dfrac{BH}{CB}=\dfrac{AH}{AB}=\dfrac{BA}{CA}\)

\(\Rightarrow BH=\dfrac{BA.CB}{CA}=\dfrac{6.8}{10}=4,8\left(cm\right)\)

\(AH=\dfrac{BA.AB}{CA}=\dfrac{6.6}{10}=3,6\left(cm\right)\)

\(HC=AC-AH=10-3,6=6,4\left(cm\right)\)

c) -Xét △BHA và △HBC:

\(\widehat{BHA}=\widehat{BHC}=90^0\)

\(\widehat{ABH}=\widehat{HCB}\)(△BAH∼△CAB)

\(\Rightarrow\)△BHA∼△CHB (g-g)

 


Các câu hỏi tương tự
Mai Enk
Xem chi tiết
7A11 Trần Gia Bảo
Xem chi tiết
Nguyễn Thiên Ngân
Xem chi tiết
Nguyễn Thiên Ngân
Xem chi tiết
anhthu hothi
Xem chi tiết
Võ Phượng Võ
Xem chi tiết
Mai Thùy Linh
Xem chi tiết
Trương Gia Bảo
Xem chi tiết
12121
Xem chi tiết