cho tam giác ABC vuông tại A. trên tia đối của tia CA lấy điểm D sao cho CA=CD, trên tia đối tia CB lấy điểm E sao cho CB=CE.
1) Chứng minh tam giác ABC = tam giác DEC,
2) chứng minh AB//DE và ED vuông góc với CD,
3) Chứng minh AE = BD,
4) Gọi M là trung điểm của bd, N là trung điểm của AEchứng minh : 3 điểm M,C,N thẳng hàng
Cho tam giác ABC vuông tại A, số đo của ABC = 50 độ a) Tính số đo của ACB. b) Lấy điểm D nằm trên tia đối của tia CA sao cho CD = CA , lấy điểm E nằm trên tia đối của tia CB sao cho CE = CB Chứng minh rằng: tam giác ABC = tam giác DFC và AB song song với DE. c) Lấy điểm 1 trên cạnh AB (điểm I không trùng với điểm A và điểm B), lấy điểm K trên cạnh DE ( điểm K không trùng với điểm D và điểm E) sao cho AI = DK Chứng minh rằng: Ba điểm I, C, K thẳng hàng
Bài 5: Cho tam giác ABC vuông cân tại A. Trên tia đối của tia BA lấy điểm D sao cho DB = BC. Tính số đo các góc của tam giác ACD
Bài6:TamgiácABCcântạiBcóBˆ =100 đôn.LấycácđiểmDvàEtrêncạnhAC sao cho AD = BA, CE = CB. Tính số đo góc DBE?
Bài 7: Cho tam giác ABC cân tại A. Vẽ BH vuông góc với AC tại H. Chứng minh rằng góc BAC có số đo gấp đôi số đo góc CBH.
Bài 8: Cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Gọi I là giao điểm của BE và CD.
a) Chứng minh tam giác IBC và tam giác IDE là các tam giác cân.
b) Chứng minh BC // DE.
c) Gọi M là trung điểm của BC. Chứng minh ba điểm A, M, I thẳng hàng.
Cho tam giác ABC vuông tại C (AC>CB).
a/ Biết  có số đo =40 độ. Tính số đo góc B ?
b/ Trên tia đối của tia CB lấy điểm D sao cho CD = CB. Chứng minh : tam giác ABC = tam giác ADC
c/ Trên AD lấy điểm M, trên AB lấy điểm N sao cho AM = AN. Chứng minh CM = CN
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H, trên tia đối của tia HA lấy điêm D sao cho HD= HA. Trên tia đối của tia CB lấy điểm E sao cho CE=CB. a) Chứng minh: Tam giác ACD cân b) Chứng minh: Tam giác ACE=Tam giác DCE c) Đường thẳng AC cắt DE tại K. Chứng minh: AB+BC> 2DK Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H, trên tia đối của tia HA lấy điêm D sao cho HD= HA. Trên tia đối của tia CB lấy điểm E sao cho CE=CB.
a) Chứng minh: Tam giác ACD cân
b) Chứng minh: Tam giác ACE=Tam giác DCE
c) Đường thẳng AC cắt DE tại K. Chứng minh: AB+BC> 2DK
Bài 4: Cho tam giác ABC có góc A = 90 độ . Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB. a) Chứng minh tam giác ABC = tam giác DEC
b) Tính số đo góc CDE ?
Bài 1.9: Cho tam giác ABC có góc A bằng 900. Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB.
a) Chứng minh: AB = DE b) Tính số đo góc EDC?
Bài 1.10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng BC không chứa điểm A vẽ tia Cx song song với AB. Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh:
a) MA = MD b) BA điểm A, M, D thẳng hàng.
Cho tam giác ABC vuông tại A có AB=9cm, BC=15cm. Trên tia đối tia CB lấy điểm D sao cho CB=CD. Từ D kẻ đường thẳng vuông góc với AC tại E.
a) Chứng minh tam giác ABC = tam giác EDC
b) Chứng minh CA = CE. Tính CE
c) Trên tia BC lấy điểm K sao cho KC = 1/3BC, AK cắt BE tại I. Chứng minh IB = IE
Bài 2: Cho tam giác ABC trên tia đối của tia CA lấy điểm D sao cho CD = CA, trên tia đối của tia CB lấy điểm E sao cho CE=CB
a) Chứng minh: tam giác ABC= tam giác DEC
b) Chứng minh: AB //DE
c) Trên cạnh AB lấy điểm M , trên cạnh DE lấy điểm N sao cho AM=DN. Chứng minh:tam giác AMC= tam giác DNC
d) Chứng minh: Ba điểm M, C, N thẳng hàng