a: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
=>EF=AH
b: ΔABC vuông tại A
mà AI là trung tuyến
nên IB=IA=IC
góc AFE+góc IAC
=góc AHE+góc ICA
=góc BCA+góc ABC=90 độ
=>AI vuông góc EF
a: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
=>EF=AH
b: ΔABC vuông tại A
mà AI là trung tuyến
nên IB=IA=IC
góc AFE+góc IAC
=góc AHE+góc ICA
=góc BCA+góc ABC=90 độ
=>AI vuông góc EF
Cho tam giác ABC vuông tại A;AB=3cm; AC=4cm đường cao AH.kẻ HE vuông góc (E thuộc AB),HF vuông góc với AV (F thuộc AC)
a)Chứng minh EF=AH
b)Tính diện tích tam giác ABC và độ dài đoạn thẳng AH
c) Goih M,N theo thứ tự là trung điểm của HB.Tứ giác MNFE là hình gì?Vì sao?
Cho tam giác ABC vuông tại A (AB<AC) và đường cao AH. Từ H kẻ HE vuông góc với AB, HF vuông góc với AC(E thuộc AB; F thuộc AC).
a) Chứng minh tứ giác AEHF là hình chừ nhật.
b) Vẽ điểm D đối xứng với A qua F. Chứng minh tứ giác DHEF là hình bình hành.
c) Tam giác ABC cần thêm điều kiện gì thì tứ giác AEHF là hình vuông?
Cho tam giác ABC vuông tại A (AB<AC) và đường cao AH. Từ H kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC).
a. Chứng minh tứ giác AEHF là hình chữ nhật
b. Vẽ điểm D đối xứng với A qua F. Chứng minh tứ giác DHEF là hình bình hành
c. Chứng minh SAEF = SEAH
Cần hình ạ
Cho tam giác ABC vuông tại A (AB<AC) và đường cao AH. Từ H kẻ HE vuông góc với AB, HF vuông góc với AC(E thuộc AB; F thuộc AC).
a) Chứng minh tứ giác AEHF là hình chừ nhật.
b) Vẽ điểm D đối xứng với A qua F. Chứng minh tứ giác DHEF là hình bình hành.
c) Tam giác ABC cần thêm điều kiện gì thì tứ giác AEHF là hình vuông?
Cho tam giác ABC vuông tại A, AH là đường cao ( H thuộc BC). Kẻ HE, HF lần lượt vuông góc với AB và AC (E thuộc AB, F thuộc AC).
a) Chứng minh AH = EF.
b) Gọi O là giao điểm của AH và EF, K là trung điểm của AC. Qua F kẻ đường thẳng vuông góc với EF cắt BC tại I.Chứng minh tứ giác AOIK là hình bình hành.
c) EF cắt IK tại M. Chứng minh tam giác OMI cân
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc với AB E thuộc AB; kẻ HF vuông góc với AC F thuộc AC a) Chứng minh: Tứ giác AEHF là hình chữ nhật. b) Gọi P là điểm đối xứng của H qua AB . Tứ giác APEF là hình gì? Vì sao? c) Đường thẳng đi qua C và song song với BP, cắt tia PA tại Q. Chứng minh: Q đối xứng với H qua F .
Cho tam giác ABC vuông tại A, AH là đường cao (H thuộc BC). Kẻ HE, HF lần lượt vuông góc với AB và AC (E thuộc AB, F thuộc AC). a)Chứng minh AH=EF.
b)Gọi O là giao điểm của AH và EF, K là trung điểm của AC. Qua F kẻ đường thẳng vuông góc với EF cắt BC ở I. Chứng minh tứ giác AOIK là hình bình hành
Cho tam giác ABC,vuông tại A,vẽ đường cao AH,vẽ HE vuông góc với AB(E Thuộc AB),vẽ HF vuông góc với AC(F thuộc AC),vẽ AI vuông góc với EF.Chứng minh rằng:BI=CI
Cho tam giác ABC vuông tại A có AB < AC. M là trung điểm của BC. Kẻ ME vuông góc AB ( E thuộc AB ). Kẻ MF vuông góc AC ( F thuộc AC )
a) Chứng minh EF = BC/2
b) Gọi AK là đường cao của tam giác ABC. Chứng minh KMFE là hình thang cân
Giúp mình với ạ, mình cảm ơn