Cho tam giác ABC vuông tại A (AB<AC), đường cao AH. Gọi M là trung điểm của BC, D là điểm đối xứng với A qua M.
a) Chứng minh tứ giác ABDC là hình chữ nhật
b) Trên tia đối của tia HA lấy điểm E sao sho HA = HE. Chứng minh DB là phân giác của góc ADE.
c) Gọi I, K lần lượt là hình chiếu của E lên BD và CD. Chứng minh 3 điểm H,I,K thẳng hàng
Mọi người giúp mk với ạ!
Bài toán 4 : Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Gọi O là trung điểm của BC, D là điểm đối xứng của A qua O. a) Chứng minh tứ giác ABDC là hình chữ nhật. b) Trên tia đối của tia HA lấy điểm E sao cho HE - HA. Chứng minh tam giác AED vuông và tam giác BEC vuông. c) Gọi M, N lần lượt là hình chiều của E lên BD và CD, EM cắt AD tại K. Chứng minh DE = DK.
giúp mk vs ạ !
Mọi người ơi giúp mình bài này với ạ. Thankssss
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Gọi O là trung điểm của BC, D là điểm đối xứng của A qua O.
a) Chứng minh tứ giác ABDC là hình chữ nhật.
b) Trên tia đối của tia HA lấy điểm E sao cho HE = HA. Chứng minh tam giác AED vuông và tam giác BEC vuông.
c) Gọi M, N lần lượt là hình chiều của E lên BD và CD, EM cắt AD tại K. Chứng minh DE = DK.
d) Chứng minh H, M, N thẳng hàng.
Cho tam giác ABC vuông tại A( AB > AC ) , AH đường cao. Gọi O là trung điểm của AB. Trên tia đối của tia OH lấy điểm D sao cho OH = OD a) Chứng minh: tứ giác AHBD là hình chữ nhật. b) Trên tia đối của tia HA lấy Q sao cho HA = HQ Chứng minh: tứ giác BDHQ là hình bình hành. c) Gọi P đối xứng với B qua H. Chứng minh: tứ giác ABQP là hình thoi. d) Kẻ AK vuông góc với BQ(K thuộc BQ). Chứng minh KH vuông góc với KD
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
cho tam giác ABC vuông tại A.Gọi M là trung điểm của cạnh AC.Vẽ AH là đường cao của tam giác ABC H thuộc BC , gọi D là điểm đối xứng với H qua M.a. Chứng minh tứ giác AHCD là hình chữ nhậtb. Trên tia đối của tia HA lấy điểm E sao cho HE HA Tứ giác HECD là hình gì vì sao c. Chứng minh HD vuông góc với BEd. Cho cạnh AH 3 cm AC 5cm Tính diện tích tứ giác AHCDe. Tính độ dài DE
cho tam giác ABC vuông tại A.Gọi M là trung điểm của cạnh AC.Vẽ AH là đường cao của tam giác ABC H thuộc BC , gọi D là điểm đối xứng với H qua M.a. Chứng minh tứ giác AHCD là hình chữ nhậtb. Trên tia đối của tia HA lấy điểm E sao cho HE HA Tứ giác HECD là hình gì vì sao c. Chứng minh HD vuông góc với BEd. Cho cạnh AH 3 cm AC 5cm Tính diện tích tứ giác AHCDe. Tính độ dài DE
Cho tam giác ABC vuông tại A (AB > AC). Kẻ đường cao AH (H thuộc BC). Gọi M là trung điểm của AC. Trên tia đối của tia MH lấy điểm D sao cho MD = MH.
a) Chứng minh tứ giác ADCH là hình chữ nhật
b) Gọi E là điểm đối xứng của C qua H. Chứng minh tứ giác ADHE là hình bình hành
c) Vẽ EK vuông góc với AB tại K. Gọi I là trung điểm của AK. Chứng minh KE // IH
d) Gọi N là trung điểm của BE. Chứng minh HK vuông góc KN
Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh tứ giác ABDC là hình chữ nhật.
b)Lấy điểm E sao cho B là trung điểm của AE. Chứng minh tứ giác BEDC là hình bình hành. c) Lấy điểm K thuộc đoạn thẳng BD sao cho KD = 2BK. CM: EK, AC, BD là đồng quy
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH, gọi D là trung điểm của AC, lấy điểm E đối xứng với H qua D.
a) Chứng minh tứ giác AHCE là hình chữ nhật
b) Qua A kẻ AI song song với HE (I ∈ đường thẳng BC). Chứng minh tứ giác AEHI là hình bình hành.
c) Trên tia đối của tia HA lấy điểm K sao cho AH = HK. Chứng minh AK là tia phân giác của góc IAC.
d) Tìm điều kiện của tam giác ABC để tứ giác CAIK là hình vuông, khi đó tứ giác AHCE là hình gì?