a: góc ADB=1/2*180=90 độ
góc ADC=1/2*180=90 độ
=>góc ADB+góc ADC=180 độ
=>B,C,D thẳng hàng
b: góc KDO=góc KDA+góc ODA
=góc KAD+góc OAD=90 độ
=>OD là tiếp tuyến của (K) và KD là tiếp tuyến của (O)
a: góc ADB=1/2*180=90 độ
góc ADC=1/2*180=90 độ
=>góc ADB+góc ADC=180 độ
=>B,C,D thẳng hàng
b: góc KDO=góc KDA+góc ODA
=góc KAD+góc OAD=90 độ
=>OD là tiếp tuyến của (K) và KD là tiếp tuyến của (O)
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Bài 1: Điểm C nằm giữa hai điểm A và B. Vẽ đường tròn tâm O, đường kính AB và đường tròn tâm O' đường kính BC. Vẽ tiếp tuyến chung của hai đường tròn tiếp xúc với đường tròn tâm O và tâm O' tại D và E. AD cắt BE tại M
a) tam giác MAB là tam giác j?
b) chứng minh CDME là hình chữ nhật và MC là tiếp tuyến của 2 đường tròn tâm O và tâm O'
c) Kẻ tia Ex vuông góc với EA và tia By vuông góc với BA. Ex cắt By tại N. Chứng minh 3 điểm D,C.N thẳng hàng.
Bài 2: Cho (O) và (O') cắt nhau tại A và B. Tiếp tuyến tại A của (O) cắt (O') tại D. Tiếp tuyến tại A của (O') cắt (O) tại C. Chứng minh rằng:
a) tam giác ABC đồng dạng với tam giác DBA
b) (AC/AD)^2 ( AC trên AD tất cả mũ 2) = BC/BD( AC trên AD tất cả mũ 2 bằng BC/BD)
c) Gọi E là điểm đối xứng của A qua B. Chứng minh ACED là tứ giác nội tiếp.
Giải giúp mình các bài này với ạ!
1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm
2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O
3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.
Cho điểm M bất kì trên đường tròn tâm O đường kính AB. Tiếp tuyến tại M và tại B của (O) cắt nhau tại D. Qua O kẻ đường thẳng vuông góc với OD cắt MD tại C và cắt BD tại N.
a) Chứng minh DC = DN
b) Chứng minh AC là tiếp tuyến của đường tròn tâm O
c) Gọi H là chân đường vuông góc kẻ từ M xuống AB, I là trung điểm MH. Chứng minh B, C, I thẳng hàng.
d) Qua O kẻ đường vuông góc với AB, cắt (O) tại K (K và M nằm khác phía với đường thẳng AB). Tìm vị trí của M để diện tích tam giác MHK lớn nhất.
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
Cho đường tròn tâm O bán kính R có đường kính AB, dây cung BC=R.
a) Tính AC theo R và số đo góc B của tam giác ABC.
b) Đường thẳng qua O vuông góc với AC cắt tiếp tuyến tại A của đường tròn tâm O ở D.
Chứng minh DC là đường tiếp tuyến của đường tròn tâm O.
c) Đường thẳng OD cắt đường tròn tâm O tại I. Chứng minh rằng I là tâm đường tròn nội tiếp tam giác ADC.
Cho tam giác ABC vuông tại A, đường tròn tâm O, đường kính AB cắt BC tại O. a) Chứng minh: AC² = CD.BC b) Gọi I là trung điểm của BD. Tiếp tuyến tại D của (O) cắt AC tại M và cắt OI tại N. Chứng minh: NB là tiếp tuyến của (O) c) OM cắt AD ở K. Chứng minh OK.OM = OI.ON
Cho tam giác ABC ( AB < AC ), đường tròn tâm O đường kính BC cắt AB, AC tại F và E, H là giao điểm của BE và CF. S là giao điểm của EF và BC, từ A vẽ tiếp tuyến AK đến đường tròn tâm O ( K là tiếp điểm ). Chứng minh ba điểm S , H , K thẳng hàng.
Cho tam giác ABC có góc A = 90; C=30 và AB =3cm. Tia phân giác của góc B cắt AC tại O. Kẻ OK vuông góc với BC cắt BC tại K.
a. Vẽ hình
b. chứng minh tứ giác ABKO nội tiếp đường tròn
c. chứng minh BC là tiếp tuyến của đường tròn tâm O bán kính OA
d. tính diện tích tứ giác OABK
e. tứ C kẻ tiếp tuyến CL với đường tròn tâm O bán kính OA ( L là tiếp điểm khác K). Chứng minh ba điểm B, O, L thẳng hàng
Cho đường tròn (O) đường kính AB = 12 cm, lấy C trên (O) sao cho CAB = 30° . Tiếp tuyến tại A và C của (O) cắt nhau ở D. DO cắt AC tại H, DB và (O) tại F
a) Chứng minh : OD vuông góc AC tại H và DA^2 = DH.DO
b) Chứng minh : Tứ giác BOHF nội tiếp
c) OD cắt (O) tại E (E cùng phía F có bờ AB ) . Chứng minh E là tâm đường tròn nội tiếp tam giác DAC và tính bán kính đường tròn nội tiếp tam giác DAC