Xét ΔBAC và ΔBDC có
BA=BD
CA=CD
BC chung
Do đó: ΔBAC=ΔBDC
=>\(\widehat{BAC}=\widehat{BDC}\)
=>\(\widehat{BDC}=90^0\)
=>CD\(\perp\)DB tại D
Xét (B) có
BD là bán kính
CD\(\perp\)BD tại D
Do đó: CD là tiếp tuyến của (B)
Xét ΔBAC và ΔBDC có
BA=BD
CA=CD
BC chung
Do đó: ΔBAC=ΔBDC
=>\(\widehat{BAC}=\widehat{BDC}\)
=>\(\widehat{BDC}=90^0\)
=>CD\(\perp\)DB tại D
Xét (B) có
BD là bán kính
CD\(\perp\)BD tại D
Do đó: CD là tiếp tuyến của (B)
Cho đường tròn tâm B và tiếp tuyến CA (A là tiếp điểm), vẽ đường tròn tâm C, bán kính CA cắt (B) tại điểm D (khác A). Chứng minh rằng CD là tiếp tuyến của đường tròn (B)
Cho tam giác ABC vuông tại A, vẽ đường cao AH của tam giác ABC.Vẽ đường tròn tâm (A) bán kính AH , vẽ E đối xứng H qua A. Vễ tiếp tuyến với đường tròn tại E cắt CA tại D. Chứng minh: BD tiếp xúc với đường tròn tâm A bán kính AH.
Cho tam giác ABC có AB = 6cm;AC=8cm;BC = 10cm; vẽ đường tròn tâm B bán kính BA ;đường tròn tâm C bán kính CA
a, AC là tiếp tuyến của đường tròn tâm B
b, AB là tiếp tuyến của đường tròn tâm C
c, AB cắt đường tròn tâm B tại D, AC cắt được tròn tâm C tại E .M là giao điểm của 2 đường tròn.C.m D,M,E thẳng hàng
- Mình ko làm được ý C, ai giúp mới !!
Cho tam giác ABC đường cao AH vẽ đường tròn tâm a bán kính ah kẻ các tiếp tuyến BD CE với đường tròn be là các tiếp điểm khác chứng minh rằng a ba điểm da e thẳng hàng b d tiếp xúc với đường tròn có đường kính BC c gọi ba cắt d h tại I AC cắt he tại k chứng minh các điểm a yh k thuộc một đường tròn
Mik càn gấp
Cho tam giác ABC có góc BAC > 90o.
Đường tròn tâm B bán kính Ba cắt đường tròn tâm C bán kính CA tại điểm thứ hai là D ( D khác A)
BD cắt đường tròn tâm C tại E
CD cắt đường tròn tâm B tại F
a) BEFC là tứ giác nội tiếp
b) Đường tròn ngoại tiếp tam giác ABC đi qua E; F
c) AD là tia phân giác góc EAF
d) Cho d di động qua A, cắt đường tròn tâm B, tâm C tại M; N. Chứng minh: đường trung trực của MN đi qua một điểm cố định
Cho Tam Giác ABC vuông tại A, đường cao AH Vẽ đường tròn Tâm A bán kính AH kẻ các tiếp tuyến BD.CE với đường tròn Tâm A (D,E lÀ các tiếp điểm khác H). Chứng minh rằng a DB + EC = BC b Ba điểm D,A,E thẳng hàng c DE tiếp súc với đường tròn có đường kính BC
Cho tam giác ABC vuông cân tại A. Kẻ các đường tròn tâm B bán kính AB và đường tròn tâm C bán kính CA. Các đường tròn này cắt nhau tại A và D
a) Chứng minh ABDC là hình vuông
b) Kẻ các đường kính AM, AN lần lượt của các đường tròn tâm B và tâm C. Chứng minh: M ,N , D thẳng hàng
c) Đường thẳng (d) bất kì qua A cắt (B) và (C) lần lượt tại H và K. CMR: Tam giác HAK vuông cân và HK < MN
Cho tam giác ABC có góc A = 90; C=30 và AB =3cm. Tia phân giác của góc B cắt AC tại O. Kẻ OK vuông góc với BC cắt BC tại K.
a. Vẽ hình
b. chứng minh tứ giác ABKO nội tiếp đường tròn
c. chứng minh BC là tiếp tuyến của đường tròn tâm O bán kính OA
d. tính diện tích tứ giác OABK
e. tứ C kẻ tiếp tuyến CL với đường tròn tâm O bán kính OA ( L là tiếp điểm khác K). Chứng minh ba điểm B, O, L thẳng hàng
cho tam giác ABC vuông tại A. đường cao AH, gọi O là tâm của đường tròn ngoại tiếp tam giác ABC, d là tiếp tuyến của đường tròn tại A. các tiếp tuyến của đường tròn tại B và C cắt d theo thứ tự ở D và E
a, tính DOE
b, chứng minh DE= BD+CE
c, chứng minh BD.CE=R2< R là bán kính của đường tròn tâm O>
đ, chứng minh rằng BC là tiếp tuyến của đường tròn có đường kính BÉ
Cho tam giác ABC vuông tại A . Gọi O là tâm đường tròn ngoại tiếp tam giác ABC ; d là tiếp
tuyến của đường tròn tại A . Các tiếp tuyến của đường tròn tại B và C cắt d theo thứ tự ở D và E .
a) Tính góc DOE .
b) Chứng minh : DE = BD + CE .
c) Chứng minh : BD.CE = \(R^2\) ( R là bán kính đường tròn tâm O )
d) Chứng minh BC là tiếp tuyến của đường tròn có đường kính DE .