a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: DE=DA
DA<DF
=>DE<DF
c: Xét ΔBFC có
FE,CA là đường cao
FE cắt CA tại D
=>Dlà trực tâm
=>BD vuông góc FC
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: DE=DA
DA<DF
=>DE<DF
c: Xét ΔBFC có
FE,CA là đường cao
FE cắt CA tại D
=>Dlà trực tâm
=>BD vuông góc FC
Cho tam giác ABC có góc A =90 độ , BD là tia phân giác của góc B( D thuộc AC ) . Trên cạnh BC lấy điểm E sao cho BA=BE .
a) cm : tam giác ABD = tam giác EBD
b) trên tia đối của DE lấy F sao cho DC=DF . Cm AF=CE
c) Tia BD cắt FC tại H .Cm FC//AE
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E, vẽ đường thẳng vuông góc với BC, cắt AC tại D và cắt tia BA tại K.
a) CM tam giác ABD= tam giác EBD rồi suy ra BD là tia phân giác của góc ABC.
b) CM tam giác BEK = tam giác BAC.
c) CM AE//KC.
d) Vẽ DI vuông góc KC tại I. CM 3 điểm B, D, I thẳng hàng.
Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt cạnh AC tại điểm D. Vẽ DE vuông góc với BC tại E. Tia ED và tia BA cắt nhau tại F. Chứng minh rằng:
1) Tam giác ABD và tam giác EBD bằng nhau.
2) AE // FC
Cho ABC (^A=90°) ; BD là tia phân giác của góc B (D ∈ AC ). Trên tia BC lấy điểm E sao cho BA = BE
a) Chứng minh: ^ABD = ^EBD
b) Chứng minh : ^BED vuông tại E
c) So sánh AD và DC
d) Tia ED cắt AB tại F. Chứng minh rằng AB + EF > BF
Cho tam giác ABC vuông tại A có góc ACB = 36 độ
a) tính số đo góc ABC
b) vẽ tia phân giác của góc ABC cắt cạnh AC tại D. trên cạnh BC lấy điểm E sao cho BE = BA. Cm tam giác ABD = tam giác EBD
d) qua C vẽ đường thẳng vuông góc với BD tại H và cắt tia BA tại F. Cm 3 điểm E, D, F thẳng hàng
(VẼ HÌNH GIÚP MIK , KHÔNG CẦN GIẢI)
Tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE= BA
a, cmr: tam giác ABD= tam giác EBD
b, cmr: DE vuông góc BC
c, gọi F là giao điểm của BA và ED. cmr DF= DC
cho tam giác abc vuông tại a tia phân giác của góc b cắt cạnh ac tại điểm d trên cạnh lấy điểm e sao cho ba=be a, chứng minh:tam giác abd=ebd và bed=90 độ b,goi f là giao điểm của tia ba và tia ed chứng minh: df=dc
Tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE= BA
a, cmr: tam giác ABD= tam giác EBD
b, cmr: DE vuông góc BC
c, gọi F là giao điểm của BA và ED. cmr DE= DC
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC ở D; E là 1 điểm nằm trên cạnh BC sao cho BE = BA.
a) CM: DE vuông góc với BC
b) Gọi F là giao điểm của DE và AB. CMR DE = DF
c) CM: AD<DC
d) CM BD là đường trung trực của AE và AE // FC