a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(Cạnh huyền-góc nhọn)
b) Ta có: ΔBAD=ΔBHD(cmt)
nên BA=BH(hai cạnh tương ứng) và DA=DH(Hai cạnh tương ứng)
Ta có: BA=BH(cmt)
nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DA=DH(cmt)
nên D nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của AH(đpcm)
c) Xét ΔADE vuông tại A và ΔHDC vuông tại H có
DA=DH(cmt)
\(\widehat{ADE}=\widehat{HDC}\)(hai góc đối đỉnh)
Do đó: ΔADE=ΔHDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: AE=HC(Hai cạnh tương ứng)
Ta có: BA+AE=BE(A nằm giữa B và E)
BH+HC=BC(H nằm giữa B và C)
mà BA=BH(cmt)
và AE=HC(cmt)
nên BE=BC(đpcm)
d) Ta có: ΔADE=ΔHDC(cmt)
nên DE=DC(Hai cạnh tương ứng)
Ta có: BE=BC(cmt)
nên B nằm trên đường trung trực của EC(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: DE=DC(cmt)
nên D nằm trên đường trung trực của EC(Tính chất đường trung trực của một đoạn thẳng)(4)
Từ (3) và (4) suy ra BD là đường trung trực của EC
hay BD\(\perp\)EC(đpcm)
e) Ta có: DA=DH(cmt)
mà DH<DC(ΔDHC vuông tại H)
nên DA<DC(đpcm)
a) Xét tam giác BAD và tam giác BHD có:
BD chung (gt)
ABD= HBD (gt)
A = H =90o (gt)
=> BAD= BHD(c.h-g.n)
b) Ta có: BA=BH(2 cạnh tương ứng);( 2 tam giác ở câu a= nhau)
=> tam giác BAH cân tại B.
=> BD là đường trung trực của AH ( trong tam giác cân, đường trung trực đồng thời là tia phân giác).
nhớ tick cho mình nhé. chúc bạn học tốt.