.Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC. Kẻ MD và ME lần lượt vuông góc với
AB và AC (D thuộc AB, E thuộc AC). Lấy I là trung điểm của DE.
a) Tứ giác ADME là hình gì? Vì sao?
b) Chứng minh ba điểm A, I, M thẳng hàng.
c) Trên tia đối của tia DM lấy điểm P, trên tia đối của tia EM lấy điểm Q sao cho DP=DM; EQ=EM.
Chứng minh BA là phân giác của góc MBP và tứ giác BPQC là hình thang.
d) Chứng minh A, P, Q thẳng hàng và A là trung điểm PQ.
làm câu c,d giúp ạ
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
=>ADME là hình chữ nhật
b: ADME là hình chữ nhật
=>AM cắt DE tại trung điểm của mỗi đường
mà I là trung điểm của DE
nên I là trung điểm của AM
=>A,I,M thẳng hàng
c: Xét ΔBMP có
BD vừa là đường cao, vừa là đường trung tuyến
Do đó: ΔBMP cân tại B
=>BA là phân giác của góc MBP
Xét ΔAMP có
AD là đường cao, là đường trung tuyến
Do đó: ΔAMP cân tại A
=>AB là phân giác của góc MAP(1)
Xét ΔAMQ có
AC vừa là đường cao, vừa là đường trung tuyến
Do đó; ΔAMQ cân tại A
=>AC là phân giác của góc MAQ(2)
Từ (1), (2) suy ra góc PAQ=2*góc BAC=180 độ
=>P,A,Q thẳng hàng
Xét ΔAMB và ΔAPB có
AM=AP
AB chung
BM=BP
Do đó: ΔAMB=ΔAPB
=>góc AMB=góc APB
Xét ΔAMC và ΔAQC có
AM=AQ
góc MAC=góc QAC
AC chung
Do đó: ΔAMC=ΔAQC
=>góc AMC=góc AQC
=>góc AQC+góc AMB=180 độ
mà góc AMB=góc APB
nên góc AQC+góc APB=180 độ
=>BP//QC
=>BPQC là hình thang
d: AM=AP
AM=AQ
Do đó: AP=AQ
mà P,A,Q thẳng hàng
nên A là trung điểm của PQ