Cho tam giác ABC vuông tại A . Kẻ đường cao AH , qua H vẽ đường thẳng vuông góc với AB cắt AB tại K và lấy trên đường thẳng đó điểm D sao cho K là trung điểm của HD . Qua H vẽ đường thẳng vuông góc với AC cắt AC tại L và lấy trên đường thẳng đó điểm E sao cho L là trung điểm của HE .
Chứng minh :
a) Ba điểm A, D , E thẳng hàng .
b) Tứ giác BCDE là hình thang vuông .
c) BD + CE = BC.
a: Ta có: H và D đối xứng với nhau qua AB
nên AH=AD; BH=BD
=>ΔHAD cân tại A
=>AB là phân giác của góc HAD(1)
Ta có H và E đối xứngvới nhau qua AC
nên AH=AE; CH=CE
=>ΔAHE cân tại A
=>AC là phân giác của góc HAE(2)
Từ (1) và (2) suy ra góc DAE=2xgóc BAC=180 độ
=>D,A,E thẳng hàng
b: Xét ΔAHB và ΔADB có
AH=AD
BH=BD
AB chung
Do đó: ΔAHB=ΔADB
Suy ra: góc ADB=90 độ
=>BD vuông góc với DE(3)
Xét ΔAHC và ΔAEC có
AH=AE
HC=EC
AC chung
Do đó: ΔAHC=ΔAEC
Suy ra: góc AEC=90 độ
=>CE vuông góc với ED(4)
Từ (3) và (4) suy ra BDEC là hình thang vuông
c: ED=AE+AD
=AH+AH=2AH
d: Xét ΔDHE có
HA là đường trung tuyến
HA=DE/2
Do đó: ΔDHE vuông tại H