a: góc APH=góc AQH=góc PAQ=90 độ
=>APHQ là hình chữ nhật
=>PQ=AH
b: Xét ΔHED có HQ/HE=HP/HD
nên QP//ED và QP/ED=HQ/HE=1/21
=>PQ=1/2ED
a: góc APH=góc AQH=góc PAQ=90 độ
=>APHQ là hình chữ nhật
=>PQ=AH
b: Xét ΔHED có HQ/HE=HP/HD
nên QP//ED và QP/ED=HQ/HE=1/21
=>PQ=1/2ED
Cho tam giác ABC vuông tại A, đường cao AH, từ H kẻ Hx vuông góc với AB tại P và Hy vuông góc với AC tại Q. Trên tia Hx và Hy lần lượt lấy D và E sao cho PH=PD, QH=QE.
Cm: a, A là trung điểm của DE
b, PQ= 1/2DE
c, PQ=AH
Cho tam giác ABC vuông tại A, kẻ đường cao AH. Trên các tia Hx, Hy lần lượt lấy các điểm D và E sao cho PH = PD, QH = QE. Chứng minh:
a) A là trung điểm của DE
b) PQ = (1/2)DE
c) PQ = AH
Cho tam giác ABC vuông tại A, đường cao AH. Trên tia Hx vuông góc với AB lấy điểm D sao cho AB là đường trung trực của HD. Trên tia Hy vuông góc với AC lấy điểm E sao cho AC là đường trung trựcHE.
a) Chứng minh 3 điểm D,A,E thẳng hàng
b) Chứng minh tứ giác BCED là hình thang vuông
c) Chứng minh ED=2AH
d) Chứng minh tam giác DHE vuông
Cho tam giác ABC vuông tại A . Kẻ đường cao AH . Trên tia Hx vuông góc với AB , lấy điểm D sao cho AB là đường trung trực của đt HD . Trên tia Hy vuông góc với AC lấy điểm E sao cho AC là đường trung trực của HE
a) CM ba điểm D,E,A thẳng hàng
b ) CM tứ giác BCDE là hình thang vuông
Cho tam giác ABC vuông tại A, kẻ AH vuông với BC . Từ H kẻ Hx vuông góc với AB tại P và trên Hx lấy 1 điểm D sao cho P là trung điểm của HD. Từ H kẻ Hy vuông góc AC tại Q và trên Hy lấy một điểm E sao cho Q là trung điểm của HE
a) CM: 3 điểm D,A,E thẳng hàng
b) CM: PQ // DE
C) PQ= AH
cho tam giác ABC vuông ở A,đường cao AH.Kẻ HE vuông góc với AB tại E và HF vuông góc với AC tại F
a)CM:tứ giác AFHE là hình chữ nhật
b)Trên tia đối của tia FH lấy điểm M sao cho FH=FM.Trên tia đối của tia EH lấy điểm N sao cho EH=EN.Chứng minh tứ giác AEFM là hình bình hành
c)Kẻ trung tuyến AI của tam giác ABC.CHứng minh AI vuông góc MN
Cho tam giác ABC vuông tại A (AC > AB) đường cao AH (H ∈ BC).Trên tia đối của tia HB lấy điểm D sao cho HB = HD. Kẻ DE vuông góc với AC tại E và HK vuông góc với AC tại K. Gọi M là trung điểm của DC. Chứng minh góc HEM vuông
Cho tam giác ABC vuông tại A. Đường cao AH. Trên tia Hx vuông góc với AB, ta lấy điểm D sao cho AB là đường trung trực của HD. Trên tia HI vuông góc với AC ta cũng lấy điểm E sao cho AC là trung trực của đoạn thẳng HE. CMR:
a, Ba điểm D,A,E thẳng hàng.
b, Tứ giác BCED là hình thang vuông.
c, DE=2AH
d,Tam giác DHE là tam giác vuông.
Giúp mik nhanh nha.
cho tam giác ABC vuông tại A. Đường cao AH. Từ H vẽ HD vuông góc với AB tại D, vẽ HE vuông góc với AC tại E. Trên tia đối tia AC lấy điểm F sao cho AF = AE. K là điểm đối xứng của B qua A. Gọi M là trung điểm của AH. Chứng minh CM vuông góc với HK