cho tam giác ABC vuông ở A,đường cao AH.Kẻ HE vuông góc với AB tại E và HF vuông góc với AC tại F
a)CM:tứ giác AFHE là hình chữ nhật
b)Trên tia đối của tia FH lấy điểm M sao cho FH=FM.Trên tia đối của tia EH lấy điểm N sao cho EH=EN.Chứng minh tứ giác AEFM là hình bình hành
c)Kẻ trung tuyến AI của tam giác ABC.CHứng minh AI vuông góc MN
\(a,\widehat{AFH}=\widehat{AEH}=\widehat{EAF}=90^0\) nên \(AFHE\) là hcn
\(b,\) Vì \(AFHE\) là hcn nên \(AE=FH=FM\left(t/c.đối.xúng\right);AE//FH\)
\(\left\{{}\begin{matrix}AE=FM\\AE//FM\left(AE//FH\right)\end{matrix}\right.\Rightarrow AEFM\) là hbh
\(c,\) Tam giác AHN có AE vừa là đường cao và trung tuyến nên cân tại A
Do đó AE cũng là p/g \(\widehat{HAN}\)
\(\Rightarrow\widehat{NAE}=\widehat{HAE}\)
Mà \(\widehat{HAE}=\widehat{ACB}\left(cùng.phụ.với.\widehat{ACH}\right)\)
\(\Rightarrow\widehat{NAE}=\widehat{ACB}\left(1\right)\)
Vì AI là trung tuyến ứng với cạnh huyền tam giác ABC vuông tại A nên \(AI=BI=IC=\dfrac{1}{2}BC\Rightarrow\Delta AIB\) cân tại I
\(\Rightarrow\widehat{IAB}=\widehat{ABC}\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\widehat{NAE}+\widehat{IAB}=\widehat{ACB}+\widehat{ABC}=90^0\left(\Delta ABC.vuông.tại.A\right)\\ \Rightarrow\widehat{IAN}=90^0\\ \Rightarrow AI\perp MN\)