a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: ΔABC đồng dạng với ΔHAC
=>CA/CH=CB/CA
=>CA^2=CH*CB
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: ΔABC đồng dạng với ΔHAC
=>CA/CH=CB/CA
=>CA^2=CH*CB
Cho tam giác ABC vuông tại A. Đường cao AH. a) Chứng minh rằng tam giác ABC đồng dạng với tam giác HBA. b) Chứng minh rằng tam giác ABC đồng dạng với tam giác HAC. c) AC^2 = BC.CH
đ) Trên HC lấy điểm D sao cho HD = HA. đường vuông góc với BC tại D cắt AC tại E. kẻ AG là đường phân giác của tam giác ABC
cm GB / BC = HD/(AH + HC)
cho tam giác ABC vuông tại A, đường cao AH. Từ H vẽ HI vuông góc với AB tại I và HK vuông góc với AC tại K. Gọi AD là trung tuyến của tam giác ABC.
a, CM: tam giác ABC đồng dạng với tam giác HAC
b, CM: tứ giác AIHM là hình chữ nhật
c, CM: AB.AI = AC.AK
d, CM: AD vuông góc với IK
giúp tui vs
Cho tam giác ABC vuông tại A, AB=12cm, AC=16cm, vẽ đường cao AH
a)CM:tam giác HAC đồng dạng với tam giác ABC
b)Tính BC và HC
cho tam giác ABC vuông tại A đường cao AH
a) chứng minh tam giác ABC đồng dạng với tam giác HCA
b) chứng minh AH^2 = HB.HC
c) phân giác ABC cắt AH và AC lần lượt tại I và K chứng minh AI^2= IH.KC
Cho tam giác ABC VUÔNG TẠI a, có đường cao AH
a) chứng inh tam giác ABC đồng dạng tam giác HBA và \(AB^2\)=BH.BC
b) Kẻ HD vuông góc với AC (D ϵ AC). Đường trung tuyến C cắt HD tại N. Chứng minh N là trung điểm HD
Cho tam giác ABC VUÔNG TẠI a, có đường cao AH
a) chứng minh tam giác ABC đồng dạng tam giác HBA và \(AB^2\)=BH.BC
b) Kẻ HD vuông góc với AC (D ϵ AC). Đường trung tuyến C cắt HD tại N. Chứng minh N là trung điểm HD
giúp em với ạaaa
cho tam giác ABC vuông tại A có AB= 3 cm : AC=4cm vẽ đường cao AH(AH thuộc BC)
a) CM tam giác ABC đồng dạng với tam giác HAC
b)tính BC,AH
c)BD là tia phân giác của B(D thuuocj AC),E là giao điểm của AH và BD CM BD.HE=BE.AD
CM AE=AD