Cho tam giác ABC vuông tại A. đường cao AH, trung tuyến AM(H,M thuộc BC). Gọi D E theo thứ tự là hình chiếu của điểm M trân AB, AC a,Chứng minh rằng tứ giácADHE là hình chữ nhật
b, Chứng minh AM vuông góc với DE
c,Biết AB = 6 cm AC bằng 8 cm.Tính DE
d,Gọi N là giao điểm của AM và HE,K là hình chiếu của điểm M trên AB.Chứng minh rằng ba đường thẳng MK,BN,AH đồng quy
a:
Sửa đề: Là hình chiếu của H trên AB,AC
Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB=MC
Ta có: MA=MC
=>\(\widehat{MAC}=\widehat{MCA}\)
Ta có: ADHE là hình chữ nhật
=>\(\widehat{AED}=\widehat{AHD}\)
mà \(\widehat{AHD}=\widehat{ABC}\left(=90^0-\widehat{HAD}\right)\)
nên \(\widehat{AED}=\widehat{ABC}\)
\(\widehat{AED}+\widehat{MAC}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>AM\(\perp\)DE
c: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Ta có: ADHE là hình chữ nhật
=>AH=DE
mà AH=4,8cm
nên DE=4,8cm