vẽ hình đi
nói thiệt là mk dốt toán hình lém
vẽ hình đi
nói thiệt là mk dốt toán hình lém
Cho tam giác ABC vuông cân tại A . D là điểm bất kì trên cạnh AB . Trên nửa mặt phẳng bờ AB có chứa điểm C. Vẽ Tia Bx sao cho góc ABx=135 ĐỘ. đường thẳng vuông góc với CD tại D cắt Bx tại E. CMR tam giác CDE là tam giác cân
1. Từ A ngoài đường tròn tâm O. Kẻ 2 tia tiếp tuyến AM , AN. Biết góc MAN = a độ ( không đổi ). Từ I bất kì trên cung nhỏ MN, vẽ tiếp tuyến cắt AM , AN tại B và C. OB và OC cắt đường tròn O tại D và E. CM : Cung DE không đổi khi I chạy trên cung MN
2. Cho đường tròn O và O' cắt nhau tại A và B. Qua A kẻ đường thẳng vuông góc với AB cắt đường tròn O tại C, cắt đường tròn O' tại D. Tia CB cắt đường tròn O' tại F , tia DB cắt đường tròn O tại E. CM : AB là tia phân giác góc EAF
3. Cho tam giác ABC nhọn. Điểm I bất kì trong tam giác. Kẻ IH vuông góc AB , IK vuông góc AC , IL vuông góc AB. Tìm vị trí điểm I sao cho : AL^2 + BH^2 + CK^2 đạt gtnn
Cho tam giác ABC đều trên cạnh BC lấy điểm E bất kì đường thẳng vuông góc với AC kẻ từ E cắt đường thẳng vuông góc với AB kẻ từ B tại D lấy trung điểm K của đoạn EC trên tia đối của tia KD lấy điểm F sao cho KD=FK
Từ E kẻ đường thẳng song song với AB cắt AC tại M gọi G là tọng tâm của tam giác CME và I là trung điểm của đoạn MB tính góc AIG
Cho tam giác ABC vuông tại A và tia phân giác BD. Qua D kẻ đường thẳng vuông góc với BC tại E. CMR:
a) tam giác BAD = tam giác BED
b) BD là trung trực của AE
c) AD < DC
d) Trên tia đối của tia AB lấy F sao cho AF = CE. CM 3 điểm E, D, F thẳng hàng
Cho tam giác ABC vuông tại A (AB<AC) có AB = 6cm, BC = 10cm
a) Tính độ dài AC
b) Trên tia đối của tia AB lấy điểm D sao cho AD = AB
Chứng minh: tam giác ABC = tam giác ADC
c) Qua A vẽ đường thẳng song song với BC cắt DC tại E
Chứng minh: Tam giác AEC cân tại E
d) Gọi F là trung điểm của BC. Trên AC lấy điểm O sao cho AC = 3AO
Chứng minh ba điểm F, O, D thẳng hàng.
Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh BC, trên tia đối của tia CB lấy điểm E sao cho CE=BD. Các đường thẳng vuông góc với BC tại D và E lần lượt cắt các đường thẳng AB và Ac theo thứ tự tại M, N. Gọi I là giao điểm của MN với BC. CMR đường thẳng vuông góc với MN luôn đi qua một điểm cố đinh.
Cho tam giác ABC với độ dài 3 cạnh AB = 3cm, BC = 5cm, AC = 4cm
a) Tam giác ABC là tam giác gì? Vì sao?
b) Trên cạnh BC lấy điểm D sao cho BA = BD . Từ D vẽ Dx vuông góc với BC (Dx cắt AC tại H). Chứng minh rằng: BH là tia phân giác của góc ABC
c) Vẽ trung tuyến AM. Chứng minh tam giác ABC cân
Cho tam giác ABC vuông tại A có AB= 9cm ; BC=10cm
a. Tính AC và so sánh các góc tam giác ABC
b. Trên tia đối tia AB lấy điểm D sao cho A là trung điểm BD. Chứng minh tam giác BCD cân
c. Gọi E; F lần lượt là trung điểm các cạnh DC, BC. Đường thẳng BE cắt cạnh AC tại M.
Tính CM và chứng minh 3 điểm D; M; F thẳng hàng
Cho tam giác ABC cân tại A .trên tia đối của tia BA vàCA lấy 2 điểm D,E sao cho BD=CE.
a/ chứng minh DE//BC
b/ Từ D kẻ DM vuông gó với BC,EN vuông góc với BC. cHỨNG MINH BM=CN
c/ Chứng minh tam giac AMN cân
d/Từ B và C kẻ các đường vuông góc với AM, AN chúng cắt nhau tại I . Chứng minh rằng AI là tia phân giác chung của hai góc BAC và MAN.