1, Cho tam giác nhọn ABC co H là trực tâm, gọi M,N lần lượt là trung điểm của BC và AH. Đường phân giác trong góc A cắt MN tại K. CM AK vuông góc vs HK
2, Cho tam giác ABC nội tiếp đường tròn (O), Gọi AH, AD lần lượt là đường cao, đường phan giác trong của tam giác ABC (H,D thuộc BC). Tia AD cắt (O) tại E, tia EH cắt (O) tại F vaf tia FD cắt (O) tại K. CM AK là đường kính của (O)
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=15cm, BC=25cm.
a)tính AC,AH,HB,HC (câu này viết chắc đáp án thôi ạ)
b) Qua B kẻ đường thẳng d vuông góc với BC. Gọi I là trung điểm AH; CI cắt đường thẳng d tại K. Tính AK,BK
c) Gọi E là điểm đối xứng H qua A; BI cắt EC tại F. Chứng minh rằng tam giác EHC và tam giác BHI đồng dạng, I là trực tâm tam giác EBC
(NẾU ĐƯỢC THÌ VẼ HÌNH GIÚP MÌNH VỚI Ạ, KO VẼ CŨNG KHÔNG SAO)
cho tam giác ABC vuông tại A (AB<AC) đường cao AH ,H thuộc BC,gọi D là điểm đối xứng của A qua H,M là trung điểm của HC,đường thảng D đi qua H vuông góc với AM cắt đường thẳng AB tại điểm I
1)CM AH bình=HD.HC
2)CM ID//BC
Cho tam giác ABC vuông tại A, đường cao AH. Biết HC = 4cm , HB = 3cm
a) Tính AB , AH
b) Gọi D và E lần lượt là hình chiếu của H trên AB , AC
Chứng minh AD.DB + AE.EC = AH\(^2\)
c) Đường thẳng vuông góc với DE tại E cắt BC tại K.
Chứng minh K là trung điểm của CH
Cho tam giác ABC vuông tại A, đường cao AH. Biết HC = 4cm , HB = 3cm
a) Tính AB , AH
b) Gọi D và E lần lượt là hình chiếu của H trên AB , AC
Chứng minh AD.DB + AE.EC = AH\(^2\)
c) Đường thẳng vuông góc với DE tại E cắt BC tại K.
Chứng minh K là trung điểm của CH
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). Gọi M và N lần lượt là hình chiếu của H trên AB và AC.
Qua A kẻ đường thẳng vuông góc với MN cắt BC tại K . CM K là trung điểm của BC. (chỉ ý này thôi ạ)
--------------
(Các ý trước:
a) Giả sử HB = 3, 2 cm , HC = 7,2cm . Tính HA , AC và góc B ; góc C
b) Chứng minh: AM.AB = AN.AC và HB.HC = AM.MB + AN.NC
Cho tam giác ABC cân tại A, có góc A nhọn. Từ A vẽ đường thẳng vuông góc AB, đường thẳng này cắt BC tại D. Đường tròn tâm K đường kính AD cắt DC và AC lần lượt tại H và E. a) CM: Tam giác AHD và tam giác AED vuông. b) CM: H là trung điểm BC c) AH^2 =HC.HD d) CM DH là tia phân giác của góc ADE. CM KH song song DE
Cho tam giác ABC (AB nhỏ hơn AC) có 3 góc nhọn ,đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại D và E. Gọi H là giao điểm của BE và CD, tia AH cắt cạnh BC tại F. Gọi I là trung điểm AH . Qua I kẻ đường thẳng vuông góc với AO cắt đường thẳng DE tại M. CM: AM là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE
Cho tam giác ABC nhọn ( AB < AC ) .Đường tròn tâm O có đường kính BC cắt AB và AC lần lượt tại E và D . Gọi H là giáo điểm của CE và BD .
a ) AH cắt BC tại F : CMR AF vuông góc với BC
b) kẻ HK ⊥ OA tại K .C/m A,D,K,E cùng thuộc 1 đường tròn