a: Sửa đề: góc ABD=góc AED
Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
=>DB=DE và góc ABD=góc AED
b: Xét ΔAEF vuông tại A và ΔABC vuông tại A có
AE=AB
góc AEF=góc ABC
=>ΔAEF=ΔABC
=>AF=AC
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a: Sửa đề: góc ABD=góc AED
Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
=>DB=DE và góc ABD=góc AED
b: Xét ΔAEF vuông tại A và ΔABC vuông tại A có
AE=AB
góc AEF=góc ABC
=>ΔAEF=ΔABC
=>AF=AC
cho tam giác ABC vuông tại A có AB<AC. Vẽ tia AD là tia phân giác của góc BAC (D\(\in\)BC). Trên AC lấy điểm E sao cho AB=AE
a)Chứng minh rằng: tam giác ABD = tam giác AED
b)tia ED cắt AB tại F . chứng minh AC=DF
c) gọi G là trung điểm của DF; AD cắt CF tại H và cắt CG tại I chứng minh DI=2IH
Cho tam giác ABC vuông tại A có AB < AC. Vẽ AD là tia phân giác của góc BAC (D thuộc BC). Trên AC lấy điểm E sao cho AE = AB
a, Chứng minh rằng : Tam giác ADB tam giác ADE rồi suy ra góc ABD = gócAED
b, Tia ED cắt AB tại F. Chứng minh rằng : AC = AF
c, Gọi G là trung điểm của DF; AD cắt CF tại H và cắt CG tại I. Chứng minh rằng : DI = IH
Cho tam giác ABC có AB < AC. Trên AC lấy E sao cho AE = AB. Kẻ phân giác của góc A cắt BC tại D
a. Chứng minh tam giác ABD = tam giác AED
b. Tia ED cắt tia AB tại F. Chứng minh tam giác ABC = tam giác AEF
c. Tia AD cắt FC tại M.
N là trung điểm của DF.
DM cắt CN tại G. Tính CG/GN
Cho tam giác ABC có AB < AC. Trên AC lấy E sao cho AE = AB. Kẻ phân giác của góc A cắt BC tại D
a. Chứng minh tam giác ABD = tam giác AED
b. Tia ED cắt tia AB tại F. Chứng minh tam giác ABC = tam giác AEF
c. Tia AD cắt FC tại M.
N là trung điểm của DF.
DM cắt CN tại G. Tính CG/GN
Cho tam giác ABC vuông tại A (AB < AC). Vẽ AD là tia phân giác của góc BAC (D thuộc BC). Trên đoạn AC lấy điểm H sao cho AH = AB. a) Chứng minh góc ADH = góc ADB b) Tia HD cắt AB tại E. Chứng minh : tam giác AHE = tam giác ABC và AD ^ EC c) Gọi G là trung điểm của ED. Tia AD cắt CG tại X. Chứng minh 3.DX < 2.DC
Cho tam giác ABC vuông tại A (AB < AC). Vẽ AD là tia phân giác của góc BAC (D thuộc BC). Trên đoạn AC lấy điểm H sao cho AH = AB.
a) Chứng minh góc ADH = góc ADB
b) Tia HD cắt AB tại E. Chứng minh : tam giác AHE = tam giác ABC và AD ^ EC
c) Gọi G là trung điểm của ED. Tia AD cắt CG tại X. Chứng minh 3.DX < 2.DC
Cho tam giác ABC có AB < AC. Trên cạnh AC lấy AD = AB. Gọi E là trung điểm của BD. A) chứng minh AE là tia phân giác của góc BAC. B) Chứng minh AE vuông góc với BD. C) Tia AE cắt cạnh BC tại F. chứng minh BF = FD. D) Trên tia đối của tia BA lấy G sao cho BG = CD. Chứng minh G, F, D thẳng hàng.
Cho tam giác ABC có AB < AC. Tia phân giác của góc BAC cắt cạnh BC tại D. Trên cạnh AC lấy E sao cho AE = AB.
a) Chứng minh tam giác ABD=AED
b) Tia ED cắt AB tại F, chứng minh tam giác BDF=EDC
c) Chứng minh: BE//FC
d) Chứng minh: BD<DC
Cho tam giác ABC có AB<AC. Trên cạnh AC lấy điểm D sao cho AB=AD. Kẻ tia Ax là tia phân giác góc BAC, tia này cắt BD tại H
a) Chứng minh H là trung điểm của cạnh BD
b) Trên tia AB lấy điểm E sao cho AE=AC. Gọi F là giao điểm của Ax và BC. Chứng minh: ba điểm D,E,F cùng nằm trên một đường thẳng.