1: Xét tứ giác AFDE có
\(\widehat{AFD}=\widehat{AED}=\widehat{FAE}=90^0\)
Do đó: AFDE là hình vuông
2: Xét ΔBED vuông tại E và ΔBHA vuông tại H có
\(\widehat{B}\) chung
Do đó; ΔBED∼ΔBHA
1: Xét tứ giác AFDE có
\(\widehat{AFD}=\widehat{AED}=\widehat{FAE}=90^0\)
Do đó: AFDE là hình vuông
2: Xét ΔBED vuông tại E và ΔBHA vuông tại H có
\(\widehat{B}\) chung
Do đó; ΔBED∼ΔBHA
Cho tam giác ABC vuông tại A có AB < AC ,phân giác AD, vẽ AH ⊥ BC tại H, vẽ DE⊥AB tại E, vẽ DF⊥AC tại F. Chứng minh
1. AFDE là hình vuông
2. Tam giác BED đồng dạng tam giác BHA
3. CF . AC bằng CD. CH
4. 2.\(\dfrac{AH^2}{AD^2}\) bằng 1+2.\(\dfrac{AH}{BC}\)
Cho tam giác ABC vuông tại A có AH là đường cao (H thuộc BC).Biết AB =6cm,Bc=10cm
a,chứng minh rằng tam giác HBA đồng dạng vs tam giác ABC
b,Tính AC,AH,HB
c,I và K lần lượt là hình chiếu của điểmH lên AB, AC. CHứng minh rằng AI .AB=AK.AC
d,Vẽ phân giác của tam giác AD của tam giác ABC ( D thuộc BC).Đường phân giác DE của tam giác ABD(E thuộc AB),đường phân giác DF của tam giác ADC(F thuộc AC) chứng minh rằng EA/EB*DB/DC*FC/FA=1
Cho tam giác ABC vuông tại A, có AB= 6cm, AC=8cm. Vẽ đường cao AH, trung tuyến AD. Từ D kẻ DE; DF lần lượt vuông góc với AB và AC tại E; F
a) Tính BC; AD
b) Chứng minh tứ giác AFDE là hình chữ nhật
c)Tính diện tich tứ giác BÈC
d) Chứng minh AC.DF= BD.AH
cho tam giác abc vuông tại a ( ab < ac ) . Vẽ đường cao ah ( H thuộc bc ) lấy điểm D sao cho H là trung điểm của BD .
a , C/M tam giác abc đồng dạng tam giác hba
b , Qua C dựng đường thẳng vuông góc với tia AD , cắt AD tại E . Chứng minh AH . CD = 2AD . HE
cho tam giácABC vuông tại A , có AB=18cm,AC=24cm.Vẽ đg cao AH và đg phân giác CD của tam giác ABC. a, Tính BC, AD,BC, b, chứng minh tam giác HBA đồng dạng với tam giác ABC, c, Từ B vẽ BK vuông góc CD tại K . gọi I là giao điểm của AH và CD. Chứng minh KD.HC=KB.HI
Cho tam giác ABC vuông tại A có AB=15 cm AC=20cm. Vẽ AH vuông góc với BC tại H.
1,Chứng minh tam giác HBA và tam giác ABC đồng dạng.
2,Tính BC, AH.
3,Vẽ tia phân giác của góc BAH cắt BH tại D. Tính BH DH .
4, Trên cạnh HC lấy E sao cho HE =HA, qua E vẽ đường thẳng vuông góc với cạnh BC cắt AC tại M, qua C vẽ đường thẳng vuông góc với BC cắt tia phân giác của góc MEC tại F. Chứng minh H,M,F thẳng hàng
Cho tam giác ABC vuông tại A(AB<AC), vẽ đường cao AH (H thuộc BC)
a) Chứng minh tam giác ACH đồng dạng với tam giác BCA
b) Trên AC lấy điểm E sao cho AB=AE. Vẽ ED vuông góc bới BC (D thuộc BC). Chứng minh CE×CA=CD×CB
c) Chứng minh AH=HD
d) Chứng minh AD×AB=AE×BD + AB×DE
Cho tam giác ABC vuông tại A , vẽ đường cao AH . Chứng minh
a)Tam giác ABC đồng dạng với tam giác ABH
b) Vẽ tia phân giác AI . Tính IB vầ IC biết BC =10cm và \(\dfrac{AB}{AC}\)=\(\dfrac{2}{3}\)