1: Xét ΔABC vuông tại A và ΔEHC vuông tại E có
\(\widehat{C}\) chung
Do đó: ΔABC\(\sim\)ΔEHC
2: Xét tứ giác AHEB có \(\widehat{HAB}+\widehat{HEB}=180^0\)
nên AHEB là tứ giác nội tiếp
hay \(\widehat{HBC}=\widehat{EAC}\)
1: Xét ΔABC vuông tại A và ΔEHC vuông tại E có
\(\widehat{C}\) chung
Do đó: ΔABC\(\sim\)ΔEHC
2: Xét tứ giác AHEB có \(\widehat{HAB}+\widehat{HEB}=180^0\)
nên AHEB là tứ giác nội tiếp
hay \(\widehat{HBC}=\widehat{EAC}\)
cho tam giác ABC vuông tại A có AB < AC lấy điểm H trên AC ( H khác A,C) Gọi E là hình chiếu của H trên BC
1, chứng minh tam giác ABC đồng dạng với tam giác EHC
2 chm góc HBC = góc EAC
3 AB. HI=AI.HE( I là giao điểm của AE và BH )
4 gọi M là điểm đối xứng với điểm I qua đường thẳng AB tìm vị trí của H trên AC để diện tích tứ giác MACB gấp 4 lần diện tích tứ giác IHCE
MỌI người giúp mình câu 4 với ạ
mình cảm ơn nhiều
Cho tam giác ABC vuông tại A có AB>AC và AH vuông góc với BC tại H. Gọi P, Q là hình chiếu vuông góc của H trên AB, AC.
a, Tứ giác APHQ là hình gì? Tại sao?
b, Chứng minh tam giác APQ đồng dạng với tam giác ACB.
c, Gọi I, K lần lượt là trung điểm của BH, CH. Chứng minh PI//QK.
d, Cho AB=4cm, AC=3cm. Tính diện tích tứ giác APHQ.
cho tam giác abc cân tại a, h là trung điểm của bc. gọi i là hình chiếu vuông góc của h trên ac. o là trung điểm của hi. chứng minh tam giác bic đồng dạng với tam giác aoh
2. Cho tam giác ABC vuông tại A (AB<AC), vẽ đường cao AH. Trên đoạn HC lấy điểm M (M không trùng với H,C) từ M vẽ MN vuông góc AC tại N
a) C/M tam giác CMN đồng dạng với tam giác CAH và CA*CN=CH*CM
b) C/m tam giác ADE đồng dạng với tam giác ABC và góc ADE= góc ABC
c) Trên tia đối của tia AC lấy điểm D sao cho AD < AC. Vẽ AE vuông góc BD tại E. Chứng minh góc BEH = góc BCN. Gọi K,F lần lượt là trung điểm BH và BD. I là giao điểm của EK và CF. Chứng minh rằng KC*IE = EF*IC
Cho tam giác ABC vuông tại A , AB<AC, đường cao AH . Gọi E,F là hình chiếu của điểm H trên AB và AC.
a, chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB^2 = BC. BH
b, chứng minh AE.AB= AF. AC
Cho tam giác ABC cân tại A. H là trung điểm của BC. Gọi I là hình chiếu vuông góc của H trên AC và O là trung điểm của HI. Chứng minh rằng: a) HA. IC = HI . HC b) tam giác BIC đồng dạng tam giácAOH c) AO vuông góc BI
Cho tam giác ABC vuông tại A, AB < AC, đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a. Chứng minh rằng AH2 = AD.AB = AE.AC
b. Chứng minh tam giác ABC và tam giác AED đồng dạng
c. Gọi M là trung điểm của BC, N là giao điểm của DE và BC, O là giao điểm của DE và AH. Chứng minh rằng AN vuông góc với MO
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
cho tam giác abc cân tại a và h là trung điểm của bc. gọi i là hình chiếu vuông góc của h trên cạnh ac và o là trung điểm của hi.
a, chứng minh tam giác bic đồng dạng tam giác aoh
b, cm ao vuông góc bi