a: \(BC=\sqrt{21^2+28^2}=35\left(cm\right)\)
BD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=35/7=5
=>DB=15cm; DC=20cm
b: AH=21*28/35=16,8cm
c: Xet ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
a: \(BC=\sqrt{21^2+28^2}=35\left(cm\right)\)
BD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=35/7=5
=>DB=15cm; DC=20cm
b: AH=21*28/35=16,8cm
c: Xet ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A (D thuộc BC)
a, Tính DB, DC
b, Kẻ đường cao AH (H thuộc BC) . CMR: Tam giác AHB đồng dạng tam giác CHA.
c, Tính diện tích tam giác AHB và CHA.
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A (D thuộc BC)
a, Tính DB\DC ; DB, DC
b, Kẻ đường cao AH (H thuộc BC) . CMR: Tam giác AHB đồng dạng tam giác CHA.
c, Tính diện tích tam giác AHB và CHA.
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A (D thuộc BC) a/ Tính DB, DC. b/ Kẻ đường cao AH (H thuộc BC). C/m rằng tam giác AHB đồng dạng với tam giác CHA c/ tính S tam giác AHB, tam giác CHA
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A (D thuộc BC)
a/ Tính DB, DC.
b/ Kẻ đường cao AH (H thuộc BC). C/m rằng tam giác AHB đồng dạng với tam giác CHA
c/ tính S tam giác AHB, tam giác CHA
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A (D thuộc BC). a) Tính DB/DC. b) Kẻ đường cao AH (H thuộc BC). Chứng minh tam giác AHB đồng dạng tam giác CHA
cho tam giác ABC vuông tại A, AB=8cm,AC=6cm. AD là tia phân giác của góc A(D thuộc BC), đường cao AH(H thuộc BC). Chứng minh rằng:
a, tính DB/DC
b, Tính BC từ đó tính DB,DC rồi làm tròn kết quả đến chữ số thập phân thứ 2
c, tam giác AHB đồng dạng với tam giác CHA. Tính S AHB/ S CHA
Cho Tam giác ABC vuông tại A Ab dài 8 cm , Ac dài 6 cm AD là tia phân giác A,D thuộc BC
a ) Tính DB trên DC
b) Vẻ đường cao AH (H thuộc BC )
Chứng minh rằng tam giác AHB đồng dạng tam giác CHA
Cho tam giác ABC vuông tại A (AB<AC),đường cao AH (H thuộc BC).
a) Chứng minh: tam giác HBA đồng dạng tam giác ABC
b) Chứng minh: AB2=BC.HB
c) gọi BD là phân giác của ABC (D thuộc BC) sao cho AD= 3cm Dc= 5 cm. TÍnh độ dài các đoạn thẳng AB, BC
Cho tam giác ABC vuông tại A, AH là đường cao. Đường phân giác của tam giác CHA, đường phân giác BK của tam giác ABC ( D thuộc BC, K thuộc AC ). BK cắt AH, AD lần lượt tại E,F.
a) Tam giác AHB đồng dạng tam giác CHA.
b) BF vuông góc AD.
c) KD // AH.
d) EH/AB = DK/BC