a: Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
b: góc IEF=góc IEH+góc FEH
=góc CAH+góc IHE
=góc CAH+góc ICA
=90 độ
=>ΔIEF vuông tại E
a: Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
b: góc IEF=góc IEH+góc FEH
=góc CAH+góc IHE
=góc CAH+góc ICA
=90 độ
=>ΔIEF vuông tại E
Cho tam giác vuông ABC, vuông tại A, đường cao AH (H thuộc BC) . Từ H kẻ HE, HF lần lượt vuông góc với AB và AC ( E thuộc AB, F thuộc AC)
a) Tứ giác AEHG là hình gì? tại sao?
b) Chứng minh AE.AB=AF.AC
c) Tính diện tích tứ giác AEHF biết AB=6cm, AC=8cm, BC=10cm
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm. Gọi AH là đường cao; E và F lần lượt là hình chiếu vuông góc của H trên AB và AC.
a) Chứng minh tứ giác AEHF là hình chữ nhật.
b) Chứng minh rằng AH.BC = AB.AC. Tính độ dài EF.
c) Gọi M là trung điểm của BC, đường phân giác của góc BAC cắt BC tại D. Tính diện tích các tam giác ABH, AHD, ADM và AMC.
Cho tam giác ABC vuông tại A đường cao AH . gọi E,F lần lượt là chân đường vuông góc . kẻ từ H đến AB,AC a/ Tứ giác EAFH là hình gì? b/ Qua A kẻ đường vuông góc với EF cắt BC ở I . chứng minh I là trung điểm BC.
Cho tam giác ABC vuông tại A (AB<AC) và đường cao AH. Từ H kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC).
a. Chứng minh tứ giác AEHF là hình chữ nhật
b. Vẽ điểm D đối xứng với A qua F. Chứng minh tứ giác DHEF là hình bình hành
c. Chứng minh SAEF = SEAH
Cần hình ạ
Tam giác ABC vuông tại A , đường cao AH , E và F lần lượt là các chân đường vuông góc kẻ từ H đến AB và AC
a, Tứ giác EAFH là hình gì ?
b, Qua A kẻ vuông góc với ÈF cắt BC ở I . Chứng minh I là trung điểm của BC
Cho tam giác ABC vuông tại A, đường cao AH. Từ H kẻ HE, HF lần lượt vuông góc với AB, AC.
a) Chứng minh tứ giác AEHF là hình chữ nhật.
b) Gọi O là trung điểm của AH. Chứng minh ba điểm E, O, F thẳng hàng.
c) Tìm điều kiện của tam giác ABC để tứ giác AEHF là hình vuông.
d) Khi tứ giác AEHF là hình vuông, biết HC = 3cm. Tính diện tích tứ giác AEHF
Cho tam giác ABC vuông tại A, có BC = a không đổi. Kẻ đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên các cạnh AB và AC
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Gọi M là trung điểm của BH Chứng minh góc MEF bằng 90 độ
c) Gọi N là trung điểm của CH. Tứ giác MEFN là hình gì hãy chứng minh
d) Tìm điều kiện của tam giác vuông ABC để EF có độ dài lớn nhất
cho tam giác ABC vuông tại A, đường cao AH, vẽ HE vuông góc AB tại E, HF vuông góc AB tại F
a/ chứng minh tứ giác AEHF là hình chữ nhật
b/ gọi O là giao điểm AH và EF, I và K lần lượt là trung điểm HB và HC. chứng minh tam giác OIK vuông
c/ chứng minh EI//FK
Cho tam giác ABC vuông tại A ,đường cao AH ,Gọi D,E theo thứ tự là chân các đường vuông góc kẻ từ H đến AB,AC a.Chứng minh tứ giác ADHE là hình chữ nhật b.Gọi I là trung điểm của HB ,Chứng minh DI vuông góc với DE c.Gọi K là trung điểm của HC .Chứng minh IDEK là hình thang vuông d.Giả sử DI = 1 cm ; EK = 4cm và AH = 6 cm .Tính diện tích tam giác ABC
Cho tam giác ABC vuông tại A (AB < AC) đường cao AH. Từ H vẽ HE và HF lần lượt vuông góc với AB và AC(E in AB , F in AC) .
a) Chứng minh : AEHF là hình chữ nhật và AH = EF .
b) Trên tia FC xác định điểm K sao cho FK = AF . Chứng minh tứ giác EHKF là hình bình
hành.
c) Biết BC=5cm. AC = 4 cm . Tính diện tích tam giác ABC
vẽ hình luôn đc k:>