Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Đình Dũng

Cho tam giác ABC vuông tại A, AC = 12cm, BC = 13cm.

a, Tính độ dài cạnh AB

b, Kẻ phân giác CD ( D thuộc AB ). Từ D kẻ DH vuông góc với BC (H thuộc BC)

Chứng minh: tam giác ACD = tam giác HCD

c, Chứng minh : DC là đường trung trực của AH

d, Gọi giao điểm của HD với CA là K. Chứng minh BK song song với HA

Nguyễn Lê Phước Thịnh
8 tháng 4 2022 lúc 21:17

a: AB=5cm

b: Xét ΔACD vuông tại A và ΔHCD vuông tại H có

CD chung

\(\widehat{ACD}=\widehat{HCD}\)

Do đó: ΔACD=ΔHCD
c: Ta có: ΔACD=ΔHCD

nên AC=HC và AD=HD

=>CD là đường trung trực của AH

TV Cuber
8 tháng 4 2022 lúc 21:22

a)xét tam giác ABC vuông tại A

theo định lý Py-ta-go ta có

\(BC^2=AC^2+AB^2=>AB^2=BC^2-AC^2\)

\(=>BC^2=13^2-12^2=25=>BC=\sqrt{25}=5\left(cm\right)\)

 Xét ΔACD vuông tại A và ΔHCD vuông tại H có

\(\widehat{DCA}=\widehat{DCH}\)

cạnhCD chung

=> ΔACD=ΔHCD(c.h-g.n)

thoe CM câu b ta có  ΔACD=ΔHCD

=> AC=HC và AD=HD ( 2 cạnh tg ứng)

===>CD là đường trung trực của AH

 


Các câu hỏi tương tự
Phan Quốc Việt
Xem chi tiết
Phan Quốc Việt
Xem chi tiết
Phan Quốc Việt
Xem chi tiết
Ngocanh168 Sv2
Xem chi tiết
Đào Quốc Anh
Xem chi tiết
Phúc Kiều
Xem chi tiết
Thị xuyến Phan
Xem chi tiết
Thanh Thủy Vũ
Xem chi tiết
Trang Trang
Xem chi tiết