Cho tam giác ABC vuông tại A (AB<AC), trung tuyến AM ,đường cao Ah .gọi E<F lần lượt là hình chiếu của điểm H trên cạnh AB,AC
1, Tứ giác AEHF là hình gì ? Vì sao?
2, Biết AB = 3cm ,AM= 2,5 cm . Tính diện tích tam giác ABC
3, C/m AM vuông góc với EF
4, Trên tia đối của tia MA lấy điểm D sao cho MD=MA , gọi I là điểm đối xứng của A qua BC. C/m tứ giác BIDC là hình thang cân
toán 8 nhak các bạn
câu a:
xét tứ giác AEHF, ta có
góc A=90(tam giác ABC vuông tại A)
Góc E=90(E là hinh chiếu của H trên AB nên EH vuông góc với AB tại E)
Góc F=90( F là hình chiếu của H trên AC nên HF vuông góc với AC tại F)
TỪ đó suy ra tứ giác AEHF là hình chữ nhật (tứ giác có 3 góc vuông là HCN)
Câu b:
Xét tam giác ABC vuông tại A ,ta có:
AM=1/2 *BC( định ý đường trung tuyến trong tam giác vuông)
mà AM=2,5cm (gt)
suy ra BC=cm
Vì tam giác ABC vuông tại A(gt)
nên BC^2=AM^2 + AB^2(định lý pytago)
suy ra AC=4cm
xét tam giác ABC ta có:
S(ABC)=1/2(AB*AC)=1/2(3*4)=6cm vuông
1) AEHF là hình thoi vì có góc A= góc E= góc F=90(gt)
2) Có AM là trung tuyến t/g ABC vuông tại A=> AM=1/2 BC, mà AM=2.5=> BC= 5(cm)
=> Áp dụng đ/l Pytago vào t/g ABC vuông tại A có:...
=>dt(ABC)=1/2*AB*AC=