a: Xẻt ΔCAM vuông tại A và ΔCNM vuông tại N có
CM chung
góc ACM=góc NCM
=>ΔCAM=ΔCNM
b: Xét ΔMAK vuông tại A và ΔMNB vuông tại N có
MA=MN
góc AMK=góc NMB
=>ΔMAK=ΔMNB
=>MK=MB
a: Xẻt ΔCAM vuông tại A và ΔCNM vuông tại N có
CM chung
góc ACM=góc NCM
=>ΔCAM=ΔCNM
b: Xét ΔMAK vuông tại A và ΔMNB vuông tại N có
MA=MN
góc AMK=góc NMB
=>ΔMAK=ΔMNB
=>MK=MB
Cho tam giác ABC vuông tại A(AB<AC), tia phân giác của góc ACB cắt AB tại M . Kẻ MN vuông góc với BC tại N.
a) Chứng minh tam giác ACM = tam giác NCM.
b) Gọi K là giao điểm của và AC và MN . Chứng minh MK = MB.
c) Chứng minh rằng AM + BN >MK.
Cho tam giác ABC cân tại C(C<90 độ ) . Kẻ AM vuông góc với BC tại M, BN vuông góc với AC tại N. Gọi giao điểm của AM và BN là K.
1) Chứng minh rằng tam giác CAM= tam giác CBN và CK là tia phân giác góc ACB.
2) Chứng minh MN//AB
3) Kéo dài CK cắt AB tại D. Biết AB = 10 cm , AC = 12 cm . Tính CD.
4) Chứng minh ND= 1/2 AB.
Cho ΔABC cân tại C ( C<90). Kẻ AM vuông góc với BC tại M, BN vuông góc với AC tại N.
Gọi giao điểm của AM và BN là K.
1) Chứng minh rằng ΔCAM = ΔCBN và CK là tia phân giác góc ACB.
2) Chứng minh MN//AB.
3) Kéo dài CK cắt AB tại D. Biết AB = 10cm, AC = 12cm. Tính CD.
4) Chứng minh ND = 1/2 AB
Cho ΔABC cân tại C (C<900 ). Kẻ AM vuông góc với BC tại M, BN vuông góc với AC tại N.
Gọi giao điểm của AM và BN là K.
1) Chứng minh rằng ΔCAM = ΔCBN và CK là tia phân giác góc ACB.
2) Chứng minh MN//AB.
3) Kéo dài CK cắt AB tại D. Biết AB = 10cm, AC = 12cm. Tính CD.
4) Chứng minh ND = \(\dfrac{1}{2}AB\)
Cho tam giác ABC vuông tại A (AB < AC), tia phân giác BM (M ∈ AC). Vẽ MK vuông góc với BC tại K. gọi N là giao điểm của MK và AB. Chứng minh:
b. MN = MC
Câu 7. Cho tam giác MNP cân tại M. Tia phân giác của góc NMP cắt NP tại A.
a) Chứng minh tam giác AMN = tam giác AMP.
b) Kẻ AB vuông góc với MN, AC vuông góc với MP. Chứng minh tam giác ABC
cân.
c) Chứng minh AM vuông góc với BC
d) Kẻ BD vuông góc với NA tại D. Gọi E là giao điểm của đường thẳng BD và MP.
Chứng minh M là trung điểm của CE.
Cho tam giác ABC vuông tại A (AB < AC), tia phân giác BM (M ∈ AC). Vẽ MK vuông góc với BC tại K. gọi N là giao điểm của MK và AB. Chứng minh:
c. AM < MC
cho ∆abc cân tại a, tia phân giác của góc bac cắt cạnh bc tại d. kẻ dh vuông góc với ab tại h, kẻ dk vuông góc với ac tại k. a) chứng minh ∆ahd = ∆akd b) tia kd cắt tia ab tại m, tia hd cắt tia ac tại n. chứng minh hm = kn c) chứng minh ad vuông góc với mn; bc // mn d)I là giao điểm của AD và MN.Qua I kẻ d//AM và cắt AN tại E