a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{15}=\dfrac{4}{5}\)
nên \(\widehat{B}\simeq53^0\)
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)(Hai góc nhọn phụ nhau)
hay \(\widehat{C}=37^0\)
b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BD}{9}=\dfrac{CD}{12}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{9}=\dfrac{CD}{12}=\dfrac{BD+CD}{9+12}=\dfrac{15}{21}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}BD=\dfrac{45}{7}\left(cm\right)\\CD=\dfrac{60}{7}\left(cm\right)\end{matrix}\right.\)
c) Xét tứ giác AFDE có
\(\widehat{AFD}=90^0\)
\(\widehat{AED}=90^0\)
\(\widehat{FAE}=90^0\)
Do đó: AFDE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Hình chữ nhật AFDE có AD là tia phân giác của \(\widehat{FAE}\)(gt)
nên AFDE là hình vuông(Dấu hiệu nhận biết hình vuông)