cho △abc vuông cân tại A.trên cạnh AB lấy điểm H,vẽ qua điểm B đường thẳng d vuông góc vs đường thẳng CH tại Dvà AC tại I
a)cm △IDC ∼△IAB
b)cm△IDA∼△ICB.tính số đo góc IDA
Cho tam giác ABC vuông tại B có BC >AB, lấy N là một điểm tùy ý trên cạnh AC (N ko trùng với C và A). Qua N kẻ đường thẳng vuông góc với AC và cách đoạn BC tại H , cắt đường thẳng BA tại D
a) chứng minh tam giác ABC đồng dạng tam giác AND
b) chứng minh BC.HC=AC.NC
c. chứng minh rằng góc CBN = góc HAC
d. chứng minh BC là phân giác của góc NBE với E là giao điểm của AH và DC.
Cho tam giác ABC vuông tại A có AB > AC. Lấy M là một điểm tùy ý trên cạnh BC. Qua M kẻ đường thẳng vuông góc với BC và cắt đoạn thẳng AB tại điểm I, cắt đường thẳng Ac tại điểm D.
a) Chứng minh: Tam giác ABC đồng dạng với tam giác MDC
b) Chứng minh: BI.BA = BM.BC
cho tam giác abc cân tại a (ab<ac) và d là trung điểm của bc. từ d vẽ đường thẳng vuông góc với bc cắt ac tại e.
a) cm tam giác dec đồng dạng với tam giác abc
b) đường vuông góc với bc kẻ từ b cắt ca tại f. cm bf^2=fa.fc
c) gọi I là trung điểm của ab. chứng minh tam giác fib đồng dạng với tam giác fdc
d) hai đường thẳng fi và ed giao tại m. chứng minh mc vuông góc với fc
cho tam giác abc cân tại a (ab<ac) và d là trung điểm của bc. từ d vẽ đường thẳng vuông góc với bc cắt ac tại e.
a) cm tam giác dec đồng dạng với tam giác abc
b) đường vuông góc với bc kẻ từ b cắt ca tại f. cm bf^2=fa.fc
c) gọi I là trung điểm của ab. chứng minh tam giác fib đồng dạng với tam giác fdc
d) hai đường thẳng fi và ed giao tại m. chứng minh mc vuông góc với fc
Bài 4: Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH (H thuộc BC). Lấy điểm D đối xứng với B qua H
a) Chứng minh: tam giác ABC đồng dạng với tam giác HBA
b) Qua C dựng đường thẳng vuông góc với tia AD cắt AD ở E. Chứng minh AH.CD = CE.AD
c) Chứng minh: tam giác HDE đồng dạng với tam giác ADC
d) Cho AB = 6cm, AC = 8cm. Tính diện tích tam giác DEC
Tính diện tích tam giác DEC.
e) AH cắt CE tại F. Chứng minh tứ giác ABFD là hình thoi
Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH, H thuộc BC. Lấy điểm D đối xứng với B qua H.
a) Chứng minh tam giác ABC đồng dạng với tam giác HBA.
b) Qua C dựng đường thẳng vuông góc với tia AD, cắt AD tại E. Chứng minh AH. CD = CE. AD.
c) Chứng minh tam giác HDE đồng dạng với tam giác ADC.
d) AH cắt CE tại F. Chứng minh tứ giác ABFD là hình thoi.
1. Cho tam giác ABC vuông tại A ,có AB=20cm; BC=25cm . Điểm M thuộc cạnh AB
a ) tính AC
b) Qua B vẽ các đường thẳng vuông góc với CM tại H . Cắt AC tại D . Chứng minh tam giác AMC đồng dạng với tam giác HMB
c ) Chứng minh AC . AD= AM . AB
d ) Chứng minh DM vuông góc với BC
Cho tam giác ABC vuông tại A. Đường phân giác góc B cắt AC tại D, cho AB= 6cm, BC= 10cm
a) Tính AC, AD, CD
b) Từ D kẻ đường thẳng vuông góc với AC cắt BC tại K. Qua K kẻ đường thẳng vuông góc với BD tại E và cắt AB, AC lần lượt tại F,H. Chứng minh tam giác ABC đồng dạng tam giác DHK
C) Chứng minh BFDK: hình thoi