a: ta có: CE là phân giác của góc ACB
=>\(\widehat{ACE}=\widehat{ECB}=\dfrac{\widehat{ACB}}{2}\left(1\right)\)
Ta có: BD là phân giác của góc ABC
=>\(\widehat{ABD}=\widehat{CBD}=\dfrac{1}{2}\cdot\widehat{ABC}\left(2\right)\)
Ta có: ΔABC cân tại A
=>\(\widehat{ABC}=\widehat{ACB}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{ABD}=\widehat{CBD}=\widehat{ACE}=\widehat{BCE}\)
Xét ΔECB và ΔDBC có
\(\widehat{EBC}=\widehat{DCB}\)
BC chung
\(\widehat{ECB}=\widehat{DBC}\)
Do đó: ΔECB=ΔDBC
=>BE=CD
b: Xét ΔFBC có \(\widehat{FBC}=\widehat{FCB}\)
nên ΔFBC cân tại F
=>FB=FC
Ta có: ΔECB=ΔDBC
=>EC=DB
Ta có: EF+FC=EC
BF+FD=BD
mà EC=BD và BF=FC
nên EF=FD
c: ta có: AB=AC
=>A nằm trên đường trung trực của BC(4)
Ta có: FB=FC
=>F nằm trên đường trung trực của BC(5)
Từ (4) và (5) suy ra AF là đường trung trực của BC
=>AF\(\perp\)BC