vecto MN=vecto MB+vecto BN
=1/3vecto BC+1/4vecto BA
vecto MN=vecto MB+vecto BN
=1/3vecto BC+1/4vecto BA
Cho tam giác ABC . Gọi M , N , P là 3 điểm thoả mãn vecto MC = 1/3 vecto MB , vecto NA + 3 vecto NC = 0 , vecto PA + vecto PB = 0 a ) Biểu diễn vecto MP , vecto NP theo hai vecto AB và AC b ) Chứng minh 3 điểm M , N, P thẳng hàng
Cho tam giác ABC, gọi M,N,P lần lượt là trung điểm của BC, AC, AB. D là trung điểm của AM. Chứng minh rằng:
a, vecto AB+ vecto AC+ vecto MN+ vecto MP = vecto 0
b, vecto NB+ vecto NC - 2.vecto AN= 4.vecto ND
cho tam giác ABC. Các điểm M và N thỏa mãn : vecto MN= 2 vecto MA- vecto MB+ vecto MC
a) tìm điểm I sao cho 2 vecto IA - vecto IB + vecto IC = vecto 0
b) CM : đường thẳng MN luôn đi qua một điểm cố định
c) Gọi P là trung điểm BN . CM đường thẳng MP luôn đi qua một điểm cố định
Cho tam giác ABC. E là trung điểm BC, M,N lần lượt thuộc đoạn BC sao cho E là trung điểm của MN. Chứng minh vecto AB+ vecto AC= ecto AM+ vecto AN
Cho tam giác ABC. Gọi M là điểm trên cạnh BC sao cho BM = 2/3CM. Tính Vecto AM theo vecto AB và vecto BC
Cho tam giác ABC . Gọi D là điểm sao cho vecto BD= 2/3 vecto BC và I là trung điểm của AD . Gọi M là điểm thỏa mãn vecto AM=x vecto AC.
a) Tính vecto BI theo vecto BA và vecto BC
b) Tìm x để B , I , M thẳng hàng
Cho tam giác ABC, gọi D là điểm trên cạnh BC sao cho vecto BD=2/3 vecto BC và I là trung điểm của AD. Gọi M là điểm thỏa mãn vecto AM=2/5 vecto AC. Chứng minh B,I,M thẳng hàng
Cho tam giác ABC, gọi D là điểm trên cạnh BC sao cho vecto BD=2/3 vecto BC và I là trung điểm của AD. Gọi M là điểm thỏa mãn vecto AM=2/5 vecto AC. Chứng minh B,I,M thẳng hàng
Cho tam giác ABC. Gọi A’,B’, C’ lần lượt là trung điểm của BC, CA, AB. a) Chứng minh vecto AA’+ vecto BB’+ vecto CC’ = vecto 0 b) Đặt vecto BB’ = vecto u, CC’ = v. Tính vecto BC, CA, AB theo vecto u và v
Cho tam giác ABCD, TÌm tấc cả các điểm M thỏa mãn TH:
a/ vecto MA- vecto MB= vecto CA + vecto BC