\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{BC}\)
\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{BC}\)
Cho tam giác ABC, gọi D là điểm trên cạnh BC sao cho vecto BD=2/3 vecto BC và I là trung điểm của AD. Gọi M là điểm thỏa mãn vecto AM=2/5 vecto AC. Chứng minh B,I,M thẳng hàng
Cho tam giác ABC, gọi D là điểm trên cạnh BC sao cho vecto BD=2/3 vecto BC và I là trung điểm của AD. Gọi M là điểm thỏa mãn vecto AM=2/5 vecto AC. Chứng minh B,I,M thẳng hàng
Cho tam giác ABC vuông tại A có AB = 3, AC = 4. Gọi M là một điểm trên cạnh BC và D là chân đường phân giác trong góc A. Tính độ dài vecto MD khi độ dài vecto AM nhỏ nhất
Cho tam giác đều abc có cạnh ab=4cm, gọi M là trung điểm cạnh bc .tính độ dài vecto bm-ba.
Cho tam giác ABC. Gọi A’,B’, C’ lần lượt là trung điểm của BC, CA, AB. a) Chứng minh vecto AA’+ vecto BB’+ vecto CC’ = vecto 0 b) Đặt vecto BB’ = vecto u, CC’ = v. Tính vecto BC, CA, AB theo vecto u và v
cho tam giác ABC gọi MN lần lượt là 2 điểm nằm trên 2 cạnh AB, AC sao cho 2AM=3MB, 5AN=4NC. Tính vecto MN theo 2 vecto AB,AC
Cho tam giác ABC, gọi M,N,P lần lượt là trung điểm của BC, AC, AB. D là trung điểm của AM. Chứng minh rằng:
a, vecto AB+ vecto AC+ vecto MN+ vecto MP = vecto 0
b, vecto NB+ vecto NC - 2.vecto AN= 4.vecto ND
Cho tam giác ABC. E là trung điểm BC, M,N lần lượt thuộc đoạn BC sao cho E là trung điểm của MN. Chứng minh vecto AB+ vecto AC= ecto AM+ vecto AN
Cho tam giác ABC . Gọi E là điểm trên cạnh BC sao cho 3BE= 5CE .Biểu diễn vecto \(\overrightarrow{AE}\)qua hai vecto \(\overrightarrow{AB}\)và \(\overrightarrow{AC}\)